汽车工程 ›› 2024, Vol. 46 ›› Issue (11): 1952-1961.doi: 10.19562/j.chinasae.qcgc.2024.11.002

• • 上一篇    下一篇

面向智能驾驶测试的可变跟驰特性交通车建模方法

赵健,李文旭,朱冰(),张培兴,汤瑞,李嘉胜   

  1. 吉林大学,汽车仿真与控制国家重点实验室,长春 130022
  • 收稿日期:2024-02-19 修回日期:2024-04-09 出版日期:2024-11-25 发布日期:2024-11-22
  • 通讯作者: 朱冰 E-mail:zhubing@jlu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2022YFB2502904)

A Modeling Method for Traffic Vehicle with Variable Car Following Characteristic for Intelligent Driving System Testing

Jian Zhao,Wenxu Li,Bing Zhu(),Peixing Zhang,Rui Tang,Jiasheng Li   

  1. Jilin University,State Key Laboratory of Automotive Simulation and Control,Changchun  130022
  • Received:2024-02-19 Revised:2024-04-09 Online:2024-11-25 Published:2024-11-22
  • Contact: Bing Zhu E-mail:zhubing@jlu.edu.cn

摘要:

提出一种面向智能驾驶测试的可变跟驰特性交通车建模方法。首先,通过对自然驾驶数据聚类分析,建立高真实交互个性化的跟驰模型,并利用模型输出耦合赋予多元权值,构建可用于智能驾驶测试的可变跟驰特性交通车模型;然后,通过建立交通车轨迹评价方法验证模型输出轨迹的合理性、多样性及真实性;最后,搭建联合仿真平台进行了所构建交通车模型对自动紧急制动(autonomous emergency braking, AEB)算法的应用测试。结果表明,本文构建的交通车模型可以输出不同跟驰特性下合理、多样且真实的轨迹,当轨迹数量达到60 000条时与真实自然驾驶速度轨迹匹配的平均均方根误差为0.427 m/s,且在不同交通车轨迹特性下待测系统行为响应不尽相同,通过权值系数的变化可以揭示待测系统响应的演化规律,并可实现待测系统性能的针对性测试。

关键词: 智能驾驶测试, 交通车建模, 可变跟驰特性, Transformer网络, 多元权值分配

Abstract:

A variable following characteristic traffic vehicle modeling method for intelligent driving system testing is proposed in this paper. Firstly, by clustering and analyzing natural driving data, a highly realistic interactive personalized car following model is established, and the model output coupling is used to assign multiple weights to construct a traffic vehicle model with variable car following characteristics that can be used for intelligent driving system testing. Then, by establishing the traffic vehicle trajectory evaluation method, the rationality, diversity and authenticity of the model's output trajectory are verified. Finally, a joint simulation platform is built to test the application of the constructed traffic vehicle model to the Automatic Emergency Braking (AEB) algorithm. The results show that the traffic vehicle model constructed in this paper can output reasonable, diverse, and realistic trajectories under different car following characteristics. When the number of trajectories reaches 60 000, the average root mean square error matched with the real natural driving speed trajectory is 0.427 m/s. Moreover, the behavioral response of the tested system varies under different traffic vehicle trajectory characteristics. By changing the weight coefficients, the evolution law of the tested system response can be revealed, and targeted testing of the tested system performance can be achieved.

Key words: intelligent driving system testing, traffic vehicle modeling, variable car following characteristic, Transformer network, multiple weight allocation