1 |
LIU K, SHI H, LIU B, et al. Research on new energy vehicle market penetration rate based on nested multinominal logit model[J]. World Electric Vehicle Journal, 2021, 12(4): 249.
|
2 |
KIM J, OH J, LEE H. Review on battery thermal management system for electric vehicles[J]. Applied Thermal Engineering, 2019, 149: 192-212.
|
3 |
孙含笑. 储能用磷酸铁锂电池产热分析及其热管理[D]. 秦皇岛: 燕山大学, 2023.
|
|
SUN H X. Thermal analysis and thermal management of lithium iron phosphate battery for energy storage[D]. Qinhuangdao: Yanshan University, 2023.
|
4 |
PETZL M, KASPER M, DANZER M A. Lithium plating in a commercial lithium-ion battery-a low-temperature aging study[J]. Journal of Power Sources, 2015, 275: 799-807.
|
5 |
SENYSHYN A, MÜHLBAUER M J, DOLOTKO O, et al. Low-temperature performance of Li-ion batteries: the behavior of lithiated graphite[J]. Journal of Power Sources, 2015, 282: 235-240.
|
6 |
FOROOZAN T, SHARIFI-ASL S, SHAHBAZIAN-YASSAR R. Mechanistic understanding of Li dendrites growth by in- situ/operando imaging techniques[J]. Journal of Power Sources, 2020, 461: 228135.
|
7 |
XIONG R, PAN Y, SHEN W, et al. Lithium-ion battery aging mechanisms and diagnosis method for automotive applications: recent advances and perspectives[J]. Renewable and Sustainable Energy Reviews, 2020, 131: 110048.
|
8 |
LIN C, KONG W, TIAN Y, et al. Heating lithium-ion batteries at low temperatures for onboard applications: recent progress, challenges and prospects[J]. Automotive Innovation, 2022, 5(1): 3-17.
|
9 |
KALOGIANNIS T, JAGUEMONT J, OMAR N, et al. A comparison of internal and external preheat methods for NMC batteries[J]. World Electric Vehicle Journal, 2019, 10(2): 18.
|
10 |
TIAN Y, LIN C, LI H, et al. Detecting undesired lithium plating on anodes for lithium-ion batteries-a review on the in-situ methods[J]. Applied Energy, 2021, 300: 117386.
|
11 |
XIONG R, LI Z, YANG R, et al. Fast self-heating battery with anti-aging awareness for freezing climates application[J]. Applied Energy, 2022, 324: 119762.
|
12 |
CAI F, CHANG H, YANG Z, et al. A rapid self-heating strategy of lithium-ion battery at low temperatures based on bidirectional pulse current without external power[J]. Journal of Power Sources, 2022, 549: 232138.
|
13 |
JI Y, WANG C Y. Heating strategies for Li-ion batteries operated from subzero temperatures[J]. Electrochimica Acta, 2013, 107: 664-674.
|
14 |
WANG T, TSENG K J, ZHAO J. Development of efficient air-cooling strategies for lithium-ion battery module based on empirical heat source model[J]. Applied Thermal Engineering, 2015, 90: 521-529.
|
15 |
LIU Y, ZHANG J. Design a J-type air-based battery thermal management system through surrogate-based optimization[J]. Applied Energy, 2019, 252: 113426.
|
16 |
KANG H S, SIM S, SHIN Y H. A numerical study on the light-weight design of PTC heater for an electric vehicle heating system[J]. Energies, 2018, 11(5): 1276.
|
17 |
谢宗蕻, 袁培毓, 唐超, 等. 一种加热器及其制备方法和应用: CN 202211250513.9 [P]. 2022-11-11.
|
|
XIE Z H, YUAN P Y, TANG C, et al. A heating element and a method of manufacturing and applications: CN 202211250513.9 [P]. 2022-11-11.
|
18 |
JAGUEMONT J, BOULON L, DUBÉ Y. A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures[J]. Applied Energy, 2016, 164: 99-114.
|
19 |
LEI Z, ZHANG C, LI J, et al. Preheating method of lithium-ion batteries in an electric vehicle[J]. Journal of Modern Power Systems and Clean Energy, 2015, 3(2): 289-296.
|
20 |
李军求, 吴朴恩, 张承宁. 电动汽车动力电池热管理技术的研究与实现[J]. 汽车工程, 2016, 38(1): 22-27,35.
|
|
LI J Q, WU P E, ZHANG C N. Study and implementation of thermal management technology for the power batteries of electric vehicles[J]. Automotive Engineering, 2016, 38(1): 22-27,35.
|
21 |
ZHANG J, SUN F, WANG Z. Heating character of a LiMn2O4 battery pack at low temperature based on PTC and metallic resistance material[J]. Energy Procedia, 2017, 105: 2131-2138.
|
22 |
唐超, 谢文俊, 袁培毓, 等. 翼面前缘共形电热除冰功能结构开发与验证[J]. 航空学报, 2023,44(12):427872-427872.
|
|
TANG C, XIE W J, YUAN P Y, et al. Development and verification of a conformal electrothermal deicing functional structure for the leading edge of the airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2023,44(12):427872-427872.
|
23 |
VERTUCCIO L, DE SANTIS F, PANTANI R, et al. Effective de-icing skin using graphene-based flexible heater[J]. Composites Part B: Engineering, 2019, 162: 600-610.
|
24 |
KOSTARAS C, PAVLOU C, KOUTROUMANIS N, et al. Rapid resistive heating in graphene/carbon nanotube hybrid films for De-icing applications[J]. ACS Applied Nano Materials, 2023, 6(7): 5155-5167.
|
25 |
叶璐, 邹齐, 张代军, 等. 碳纳米管膜用于碳纤维增强树脂基复合材料的电热固化技术[J]. 科技导报, 2023, 41(9): 51-57.
|
|
YE L, ZHOU Q, ZHANG D J, et al. Carbon fiber reinforced resin matrix composite curing by carbon nanotube film resistance heating [J]. Science & Technology Review, 2023, 41(9): 51-57.
|
26 |
JANAS D, KOZIOL K K. Rapid electrothermal response of high-temperature carbon nanotube film heaters[J]. Carbon, 2013, 59: 457-463.
|
27 |
王一楠. 基于虚拟仪器的自动化薄膜电阻率测量系统研究[D]. 武汉: 华中科技大学, 2010.
|
|
WANG Y L. Investigation of virtual instrumentation-based automatic thin film resistivity measurement system[D]. Wuhan: Huazhong University of Science and Technology, 2010.
|