汽车工程 ›› 2025, Vol. 47 ›› Issue (1): 1-12.doi: 10.19562/j.chinasae.qcgc.2025.01.001
• •
张佳祥1,王岩松1(),张声明2,郭辉1(
),谢晓龙2,刘宁宁1
收稿日期:
2024-05-11
修回日期:
2024-07-28
出版日期:
2025-01-25
发布日期:
2025-01-17
通讯作者:
王岩松,郭辉
E-mail:jzwbt@163.com;hgsues@163.com
基金资助:
Jiaxiang Zhang1,Yansong Wang1(),Shengming Zhang2,Hui Guo1(
),Xiaolong Xie2,Ningning Liu1
Received:
2024-05-11
Revised:
2024-07-28
Online:
2025-01-25
Published:
2025-01-17
Contact:
Yansong Wang,Hui Guo
E-mail:jzwbt@163.com;hgsues@163.com
摘要:
在汽车智能化进程中,车内声场分区控制技术在提升用户座舱的声学体验方面起着重要作用。本文对车内声场分区控制算法及应用进行了全面综述。首先介绍了该技术的提出背景和理论基础;然后深入分析了各类声场分区控制算法的发展脉络、控制原理及算法特点;最后基于现有研究进展,展望了声场分区控制技术在提高重放精度、算法鲁棒性以及声场均匀分布等方面的发展潜力,并探讨了限制该技术在车内广泛应用的一系列问题及解决方法。本综述旨在为车内声场分区控制的进一步研究提供参考,进而推动该技术在汽车领域的广泛应用。
张佳祥,王岩松,张声明,郭辉,谢晓龙,刘宁宁. 车内声场分区控制算法研究综述[J]. 汽车工程, 2025, 47(1): 1-12.
Jiaxiang Zhang,Yansong Wang,Shengming Zhang,Hui Guo,Xiaolong Xie,Ningning Liu. A Review of Research on Zoning Control Algorithms for Sound Fields in Vehicles[J]. Automotive Engineering, 2025, 47(1): 1-12.
1 | LI W, CAO D, TAN R, et al. Intelligent cockpit for intelligent connected vehicles: definition, taxonomy, technology and evaluation[J]. IEEE Transactions on Intelligent Vehicles, 2023, 9(2): 3140-3153. |
2 | DRUYVESTEYN W F, AARTS R M. Personal sound[J]. The Journal of the Acoustical Society of America, 1994, 96(5_Supplement): 3281. |
3 | DRUYVESTEYN W F, GARAS J. Personal sound[J]. Journal of the Audio Engineering Society, 1997, 45(9): 685-701. |
4 | HOUSE C, DENNISON S, MORGAN D, et al. Personal spatial audio in cars: development of a loudspeaker array for multi-listener transaural reproduction in a vehicle[J]. Proceedings of the Institute of Acoustics, 2017, 39. |
5 | OLIVIERI F, FAZI F M, NELSON P A, et al. Comparison of strategies for accurate reproduction of a target signal with compact arrays of loudspeakers for the generation of zones of private sound and silence[J]. Journal of the Audio Engineering Society, 2016, 64(11): 905-917. |
6 | CHOI J W, KIM Y H. Generation of an acoustically bright zone with an illuminated region using multiple sources[J]. The Journal of the Acoustical Society of America, 2002, 111(4): 1695-1700. |
7 | 周朝. 车内声场分区域控制研究[D]. 吉林: 北华大学, 2022. |
ZHOU C. Research on personal acoustic control in vehicle[D]. Jilin:Beihua University, 2022. | |
8 | 贺岩松, 张士强, 张志飞, 等. 基于多通道C-FxLMS的乘用车内发动机声音分区控制[J]. 汽车工程, 2020, 42(10): 1412-1419. |
HE Y S, ZHANG S Q, ZHANG Z F, et al. Engine sound partition control in passenger car based on multi-channel command-FxLMS algorithm[J]. Automotive Engineering, 2020, 42 (10): 1412-1419. | |
9 | 刘锋, 吴鸣, 杨军. 量产车型噪声主动控制系统性能实测与分析[J]. 汽车工程, 2019, 41(6): 676-681,710. |
LIU F, WU M, YANG J. Performance measurement and analysis of the active noise control system for mass production vehicle[J]. Automotive Engineering, 2019, 41(6): 676-681,710. | |
10 | 韩泽瑞, 吴鸣, 杨军. 多区域声重放技术综述[J]. 网络新媒体技术, 2021, 10(3): 1-13. |
HAN Z R, WU M, YANG J. An overview of multi-zone sound field reproduction technology[J]. Network New Media Technology, 2021, 10 (3): 1-13. | |
11 | KIRKEBY O, NELSON P A. Reproduction of plane wave sound fields[J]. The Journal of the Acoustical Society of America, 1993, 94(5): 2992-3000. |
12 | POLETTI M. An investigation of 2-D multizone surround sound systems[C]. Audio Engineering Society Convention 125. San Francisco, CA, USA: AES, 2008. |
13 | SHIN M, LEE S Q, FAZI F M, et al. Maximization of acoustic energy difference between two spaces[J]. The Journal of the Acoustical Society of America, 2010, 128(1): 121-131. |
14 | BETLEHEM T, TEAL P D. A constrained optimization approach for multi-zone surround sound[C]. 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2011: 437-440. |
15 | BETLEHEM T, WITHERS C. Sound field reproduction with energy constraint on loudspeaker weights[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2012, 20(8): 2388-2392. |
16 | MØLLER M B, OLSEN M, JACOBSEN F. A hybrid method combining synthesis of a sound field and control of acoustic contrast[C].Audio Engineering Society Convention 132. Budapest, Hungary: AES, 2012: 8. |
17 | 蔡野锋. 基于扬声器阵列的局部声重放研究[D]. 北京: 中国科学院大学, 2014. |
CAI Y F. Investigation on local sound reproduction using loudspeaker array[D]. Beijing: University of the Chinese Academy of Sciences, 2014. | |
18 | LIAO X, ZHENG S, PENG B, et al. A power constrained algorithm for multi-zone sound reproduction[C]. INTER-NOISE and NOISE-CON Congress and Conference Proceedings. Institute of Noise Control Engineering, 2014, 249(5): 2856-2861. |
19 | HU M, ZOU H, LU J, et al. Maximizing the acoustic contrast with constrained reconstruction error under a generalized pressure matching framework in sound zone control[J]. The Journal of the Acoustical Society of America, 2022, 151(4): 2751-2759. |
20 | CHANG J H, JACOBSEN F. Sound field control with a circular double-layer array of loudspeakers[J]. The Journal of the Acoustical Society of America, 2012, 131(6): 4518-4525. |
21 | LAWSON C L, HANSON R J. Solving least squares problems[M]. Society for Industrial and Applied Mathematics, 1995. |
22 | MILLER S J. The method of least squares[J]. Mathematics Department Brown University, 2006, 8: 1-7. |
23 | GÁLVEZ M F S, ELLIOTT S J, CHEER J. Time domain optimization of filters used in a loudspeaker array for personal audio[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2015, 23(11): 1869-1878. |
24 | SHIN M, FAZI F M, NELSON P A, et al. Controlled sound field with a dual layer loudspeaker array[J]. Journal of Sound and Vibration, 2014, 333(16): 3794-3817. |
25 | MØLLER M B, OLSEN M. Sound zones: on performance prediction of contrast control methods[C]. Audio Engineering Society Conference: 2016 AES International Conference on Sound Field Control. Audio Engineering Society, 2016. |
26 | LILIS G N, ANGELOSANTE D, GIANNAKIS G B. Sound field reproduction using the lasso[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2010, 18(8): 1902-1912. |
27 | FAZI F M. Sound field reproduction[D]. University of Southampton, 2010. |
28 | RADMANESH N, BURNETT I S. Wideband sound reproduction in a 2D multi-zone system using a combined two-stage Lasso-LS algorithm[C]. 2012 IEEE 7th Sensor Array and Multichannel Signal Processing Workshop(SAM). Hoboken, NJ, USA IEEE, 2012: 453-456. |
29 | RADMANESH N, BURNETT I S. Generation of isolated wideband sound fields using a combined two-stage lasso-ls algorithm[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2013, 21(2): 378-387. |
30 | BUERGER M, MAAS R, LÖLLMANN H W, et al. Multizone sound field synthesis based on the joint optimization of the sound pressure and particle velocity vector on closed contours[C]. 2015 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA). IEEE, 2015: 1-5. |
31 | BUERGER M, HOFMANN C, KELLERMANN W. Broadband multizone sound rendering by jointly optimizing the sound pressure and particle velocity[J]. The Journal of the Acoustical Society of America, 2018, 143(3): 1477-1490. |
32 | SIMÓN GÁLVEZ M F. Loudspeaker arrays for family TV[M]. Southampton, University of Southampton, 2011. |
33 | ELLIOTT S J, JONES M. An active headrest for personal audio[J]. The Journal of the Acoustical Society of America, 2006, 119(5): 2702-2709. |
34 | CHEER J, ELLIOTT S J, KIM Y, et a1. Practical implementation of personal audio in a mobile device[J]. Journal of the Audio Engineering Society,2013, 61(5): 290-300. |
35 | OLSEN M, MØLLER M B. Sound zones: on the effect of ambient temperature variations in feed-forward systems[C]. Audio Engineering Society Convention 142. Audio Engineering Society, 2017. |
36 | COLEMAN P, JACKSON P J B, OLIK M, et al. Acoustic contrast, planarity and robustness of sound zone methods using a circular loudspeaker array[J]. The Journal of the Acoustical Society of America, 2014, 135(4): 1929-1940. |
37 | PARK J Y, CHOI J W, KIM Y H. Acoustic contrast sensitivity to transfer function errors in the design of a personal audio system[J]. The Journal of the Acoustical Society of America, 2013, 134(1): EL112-EL118. |
38 | GAO H, CHENG J, LIU Z, et al. Multizone sound reproduction with adaptive control of scattering effects[J]. The Journal of the Acoustical Society of America, 2023, 153(2): 835-847. |
39 | SALLANDT H, KRAH P, LEMKE M. Supervised learning for multi zone sound field reproduction under harsh environmental conditions[J]. arXiv preprint arXiv:, 2021. |
40 | ELLIOTT S J, CHEER J, CHOI J W, et al. Robustness and regularization of personal audio systems[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2012, 20(7): 2123-2133. |
41 | SIMÓN GÁLVEZ M F, ELLIOTT S J, CHEER J. A superdirective array of phase shift sources[J]. The Journal of the Acoustical Society of America, 2012, 132(2): 746-756. |
42 | CHEER J, ELLIOTT S J. A comparison of control strategies for a car cabin personal audio system[C]. Audio Engineering Society Conference: 52nd International Conference: Sound Field Control-Engineering and Perception. Audio Engineering Society, 2013. |
43 | RUBINSTEIN R Y, KROESE D P. Simulation and the monte carlo method[M]. John Wiley & Sons, 2016. |
44 | HAMMERSLEY J. Monte carlo methods[M]. Springer Science & Business Media, 2013. |
45 | 杨真真, 方秀男. 模拟退火算法及实例应用[J]. 中国科技信息, 2021(15): 65-66. |
YANG Z Z, FANG X N. Simulated annealing algorithm and its practical application[J]. China Science and Technology Information, 2021 (15): 65-66. | |
46 | 于国栋, 吴玉宏, 宋永志. 模拟退火遗传算法在多声源定位中的应用[J]. 应用声学, 2017, 36(2): 116-121. |
YU G D, WU Y H, SONG Y Z. Genetic simulated annealing algorithm and its application in the multi-sound source localization[J]. Applied Acoustics, 2017, 36 (2): 116-121. | |
47 | CAI Y, WU M, YANG J. Sound reproduction in personal audio systems using the least-squares approach with acoustic contrast control constraint[J]. The Journal of the Acoustical Society of America, 2014, 135(2): 734-741. |
48 | GARAI B C, DAS P, MISHRA A K. Group delay reduction in FIR digital filters[J]. Signal Processing, 2011, 91(8): 1812-1825. |
49 | 伏燕军, 程强强, 于润桥, 等. 信号FIR数字滤波后相位延迟的消除[J]. 计算机工程与应用, 2012, 48(7): 146-149. |
FU Y J, CHENG Q Q, YU R Q, et al. Eleminate phase delay of FIR filtered signal[J]. Computer Engineering and Applications, 2012, 48(7): 146-149. | |
50 | ELLIOTT S J, CHEER J. Regularisation and robustness of personal audio systems[M]. Southampton, UK: University of Southampton, 2011. |
51 | HU M, LU J. Theoretical explanation of uneven frequency response of time-domain acoustic contrast control method[J]. The Journal of the Acoustical Society of America, 2021, 149(6): 4292-4297. |
52 | CAI Y, WU M, YANG J. Design of a time-domain acoustic contrast control for broadband input signals in personal audio systems[C]. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2013: 341-345. |
53 | CAI Y, WU M, LIU L, et al. Time-domain acoustic contrast control design with response differential constraint in personal audio systems[J]. The Journal of the Acoustical Society of America, 2014, 135(6): EL252-EL257. |
54 | SCHELLEKENS D H M, MØLLER M B, OLSEN M. Time domain acoustic contrast control implementation of sound zones for low-frequency input signals[C]. 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2016: 365-369. |
55 | ZHAO S, BURNETT I S. Time-domain acoustic contrast control with a spatial uniformity constraint for personal audio systems[C]. ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2022: 1061-1065. |
56 | CHEER J, ELLIOTT S J, GÁLVEZ M F S. Design and implementation of a car cabin personal audio system[J]. Journal of the Audio Engineering Society, 2013, 61(6): 412-424. |
57 | LIAO X, CHEER J, ELLIOTT S J, et al. Design of a loudspeaker array for personal audio in a car cabin[J]. Journal of the Audio Engineering Society, 2017, 65(3): 226-238. |
58 | 廖祥凝. 车内分区域声场控制及加速声品质研究[D]. 北京: 清华大学, 2017. |
LIAO X N. Personal sound control in a car cabin and research on accelerating sound quality[D]. Beijing: Tsinghua University, 2017. | |
59 | VINDROLA L, MELON M, CHAMARD J C, et al. Use of the filtered-x least-mean-squares algorithm to adapt personal sound zones in a car cabin[J]. The Journal of the Acoustical Society of America, 2021, 150(3): 1779-1793. |
60 | NELSON P A, HAMADA H, ELLIOTT S J. Adaptive inverse filters for stereophonic sound reproduction[J]. IEEE Transactions on Signal Processing, 1992, 40(7): 1621-1632. |
61 | COMANDUCCI L, ANTONACCI F, SARTI A. A deep learning-based pressure matching approach to sound field synthesis[C]. 2022 International Workshop on Acoustic Signal Enhancement (IWAENC). IEEE, 2022: 1-5. |
62 | BIANCO M J, GERSTOFT P, TRAER J, et al. Machine learning in acoustics: theory and applications[J]. The Journal of the Acoustical Society of America, 2019, 146(5): 3590-3628. |
63 | KARAKONSTANTIS X, CAVIEDES-NOZAL D, RICHARD A, et al. Room impulse response reconstruction with physics-informed deep learning[J]. The Journal of the Acoustical Society of America, 2024, 155(2): 1048-1059. |
64 | FIRTHA G, HAHN N, SCHULTZ F, et al. Local wave field synthesis by temporal bandlimitation[C]. 2023 Immersive and 3D Audio: from Architecture to Automotive (I3DA). IEEE, 2023: 1-10. |
65 | SHI L, LEE T, ZHANG L, et al. Generation of personal sound zones with physical meaningful constraints and conjugate gradient method[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2021, 29: 823-837. |
66 | HU M, SHI L, ZOU H, et al. Sound zone control with fixed acoustic contrast and simultaneous tracking of acoustic transfer functions[J]. The Journal of the Acoustical Society of America, 2023, 153(5): 2538. |
[1] | 李靖玮,罗建南,黄震. 考虑CDC系统时滞的半主动悬架控制器设计研究[J]. 汽车工程, 2024, 46(5): 913-922. |
[2] | 初亮,常城,王旭,赵迪,许炎武. 面向高级自动驾驶的线控制动系统及压力控制算法研究[J]. 汽车工程, 2022, 44(3): 308-318. |
[3] | 岳广照,孙振茂,田广东. SCR催化器温度在线预估算法及试验研究[J]. 汽车工程, 2021, 43(9): 1308-1313. |
[4] | 刘阳,宗长富,郑宏宇,韩小健,张东,郭中阳. 基于参考向量场的车辆队列二维跟踪控制算法[J]. 汽车工程, 2021, 43(7): 962-970. |
[5] | 刘刚,徐文博,靳立强. 轮毂电机驱动电动汽车液压执行单元的压力估计与控制方法研究*[J]. 汽车工程, 2019, 41(10): 1138-1144. |
[6] | 曾小华, 王振伟, 宋大凤, 巴特, 杨南南, 陈慧勇, 王印束. 混联混合动力系统功率、转矩和效率三参数匹配方法研究*[J]. 汽车工程, 2018, 40(10): 1125-1131. |
|