汽车工程 ›› 2025, Vol. 47 ›› Issue (12): 2289-2302.doi: 10.19562/j.chinasae.qcgc.2025.12.002
殷朕1,2,朱建功1,2(
),吕龙臣1,2,戴海峰1,2,魏学哲1,2
收稿日期:2025-06-16
修回日期:2025-09-26
出版日期:2025-12-25
发布日期:2025-12-19
通讯作者:
朱建功
E-mail:zhujiangong@tongji.edu.cn
基金资助:
Zhen Yin1,2,Jiangong Zhu1,2(
),Longchen Lü1,2,Haifeng Dai1,2,Xuezhe Wei1,2
Received:2025-06-16
Revised:2025-09-26
Online:2025-12-25
Published:2025-12-19
Contact:
Jiangong Zhu
E-mail:zhujiangong@tongji.edu.cn
摘要:
随着低空经济的快速发展,电动垂直起降飞行器(electric vertical take-off and landing,eVTOL)对动力电池提出了更高的性能要求。固态电池因较液态锂离子电池具有更高的能量密度和安全性,成为解决eVTOL动力系统问题的关键技术。本文分析了eVTOL不同飞行阶段的特性及对动力电池的需求,概述了聚合物、氧化物和硫化物3类固态电解质的技术进展,并结合eVTOL的实际应用,从电、热、力角度探讨了固态电池管理系统的优化路径。本文旨在为构建满足eVTOL极端工况需求的高性能固态电池及其管理系统提供理论依据与技术参考。
殷朕,朱建功,吕龙臣,戴海峰,魏学哲. 面向eVTOL的固态电池技术路径与管理系统[J]. 汽车工程, 2025, 47(12): 2289-2302.
Zhen Yin,Jiangong Zhu,Longchen Lü,Haifeng Dai,Xuezhe Wei. Solid-State Battery Technology Roadmap and Management Systems for eVTOL[J]. Automotive Engineering, 2025, 47(12): 2289-2302.
表1
eVTOL用固态电池关键需求指标、不足与改进方向"
| 需求指标 | 固态电池单体 | 固态电池系统 | 不足与改进方向 |
|---|---|---|---|
| 能量密度 | ≥400 W·h·kg-1 | ≥300 W·h·kg-1 | 多为小型模具电池,须发展安时级以上大容量电池单体 |
| 充放电倍率 | ≥4C~5C | ≥4C~5C | 缺少全生命周期功率评估,须开发实时功率输出边界评估方法 |
| 循环寿命 | ≥20 000次循环 | ≥20 000次起降 | 高倍率下寿命衰减快,须优化固态电池界面稳定性与材料结构 |
| 温度管理 | 热失控温度≥300 ℃ | 运行温度60~80 ℃ | 不仅需要高温冷却以防止热失控,还须对特定体系电芯保温 |
| 压力管理 | 聚合物/氧化物≤10 MPa 硫化物≤100 MPa | 动态压力调控能力 | 夹具笨重,须开发轻量化、集成化的主动压力管理系统 |
| [1] | 张晓兰, 黄伟熔. 低空经济发展的全球态势、我国现状及促进策略[J]. 经济纵横, 2024 (8): 53-62. |
| ZHANG X L, HUANG W R. Development of low-altitude economy:global trend, China's current situation, and promotion measures[J]. Economic Review Journal, 2024 (8): 53-62. | |
| [2] | 吕人力. 低空经济的背景、内涵与全球格局[J]. 人民论坛·学术前沿, 2024 (15): 45-56. |
| LÜ R L. The background, connotation and global pattern of low-altitude economy[J]. Frontiers, 2024 (15): 45-56. | |
| [3] | PREIS L, HERNICZEK M T K, GERMAN B J. Assessing prominent eVTOLs based on vertiport throughput, noise, and speed using multi-dimensional pareto fronts[J]. Aerospace Science and Technology, 2025, 159: 109971. |
| [4] | VELAZ-ACERA N, ALVAREZ-GARCíA J, BORGE-DIEZ D. Economic and emission reduction benefits of the implementation of eVTOL aircraft with bi-directional flow as storage systems in islands and case study for Canary Islands[J]. Applied Energy, 2023, 331: 120409. |
| [5] | HE J Q, HE Q, XU Z H, et al. Key technologies and upgrade strategies for eVTOL aircraft energy storage systems[J]. Journal of Energy Storage, 2024, 103: 114402. |
| [6] | ALBA-MAESTRE J, VAN REINE K P, SINNIGE T, et al. Preliminary propulsion and power system design of a tandem-wing long-range eVTOL aircraft[J]. Applied Sciences-Basel, 2021, 11(23): 11083. |
| [7] | YANG X F, ADAIR K R, GAO X J, et al. Recent advances and perspectives on thin electrolytes for high-energy-density solid-state lithium batteries[J]. Energy & Environmental Science, 2021, 14(2): 643-671. |
| [8] | LI Z Y, REN Y, GUO X. Polymer-based electrolytes for solid-state lithium batteries with a wide operating temperature range[J]. Materials Chemistry Frontiers, 2023, 7(24): 6305-6317. |
| [9] | GUO R Q, ZHANG K, ZHAO W B, et al. Interfacial challenges and strategies toward practical sulfide-based solid-state lithium batteries[J]. Energy Material Advances, 2023, 4: 0022. |
| [10] | BACCHINI A, CESTINO E. Electric VTOL configurations comparison[J]. Aerospace, 2019, 6(3): 26. |
| [11] | 明贵栋. 小鹏飞行汽车在京津冀完成首飞,低空经济又一“赛道”要火![J]. 商业文化, 2024 (17): 10-13. |
| MING G D. Xpeng's flying car completes first flight in Jing-Jin-Ji region, another 'race track' in low-altitude economy set to attract attention[J]. Business Culture, 2024 (17): 10-13. | |
| [12] | PRADEEP P, WEI P. Energy-efficient arrival with RTA constraint for multirotor eVTOL in urban air mobility[J]. Journal of Aerospace Information Systems, 2019, 16(7): 263-277. |
| [13] | DAVID S. Joby’s S4 makes historic piloted tilt-rotor eVTOL transition flight [EB/OL]. (2024-06-13)[2025-06-12]. https://newatlas.com/aircraft/joby-s4-makes-historic-piloted-tilt-rotor-evtol-transition-flight/. |
| [14] | SU J Z H H, ZHANG H. eVTOL performance analysis: a review from control perspectives[J]. IEEE Transactions on Intelligent Vehicles, 2024, 9(5): 4877-4889. |
| [15] | 陈起旭, 王群京, 钱喆,等. 小型全电/混动飞机技术路线与动力系统综述[J]. 中国电机工程学报, 2024, 44(12): 4966-4986. |
| CHEN Q X, WANG Q J, QIAN Z, et al. Overview of the technical roadmap and powertrain system for small all-electric or hybrid aircraft[J]. Proceedings of the CSEE, 2024, 44(12): 4966-4986. | |
| [16] | 刘巨江, 谭郁松. 不同构型电动垂直起降飞行器动力系统的安全性评估[J]. 哈尔滨工程大学学报, 2024, 45(2): 339-348. |
| LIU J J, TAN Y S. Safety evaluation of the power system of electric vertical take-off and landing vehicles with different configurations[J]. Journal of Harbin Engineering University, 2024, 45(2): 339-348. | |
| [17] | LI Y F, LIU M H. Path planning of electric VTOL UAV considering minimum energy consumption in urban areas[J]. Sustainability, 2022, 14(20): 13421. |
| [18] | 马劲韬, 张曙光, 王明凯. 锂离子电池动态特性对倾转式eVTOL飞行性能的影响[J]. 推进技术, 2024, 45(3): 227-236. |
| MA J T, ZHANG S G, WANG M K. Effects of dynamic characteristics of lithium-ion battery on flight performance of tilting eVTOL aircraft[J]. Journal of Propulsion Technology, 2024, 45(3): 227-236. | |
| [19] | LI W, CHENG R G, HUANG H H, et al. Energy consumption modeling and optimization of an eVTOL aircraft: integrating weight, motor, and battery dynamics[J]. Energy, 2025, 325: 136229. |
| [20] | CHAKRABORTY I, MISHRA A A. Sizing and analysis of a lift-plus-cruise aircraft with electrified propulsion[J]. Journal of Aircraft, 2022, 60(3): 747-765. |
| [21] | EBERSBERGER J, KEUTER R J, PONICK B, et al. Power distribution and propulsion system for an all-electric regional aircraft [C]. 2023 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC) IEEE, 2023: 1-7. |
| [22] | BHANDARI R, MISHRA A A, CHAKRABORTY I. Optimization of lift-plus-cruise vertical take-off and landing aircraft with electrified propulsion[J]. Journal of Aircraft, 2024, 61(2): 392-414. |
| [23] | ALAM M I, THU Z W, NGUYEN N, et al. Integrated propulsion system analysis framework for designing advanced air mobility aircraft[J]. IEEE Transactions on Transportation Electrification, 2024, 10(4): 10219-10238. |
| [24] | 丁水汀, 丁硕, 孙爽,等. 复合翼eVTOL电池需求及对动力总成安全性的影响[J]. 推进技术, 2024, 45(3): 212-226. |
| DING S T, DING S, SUN S, et al. Compound wing eVTOL battery requirements and implications for powertrain safety[J]. Journal of Propulsion Technology, 2024, 45(3): 212-226. | |
| [25] | BILLS A, SRIPAD S, FREDERICKS L, et al. A battery dataset for electric vertical takeoff and landing aircraft[J]. Scientific Data, 2023, 10(1): 344. |
| [26] | FREDERICKS W L, SRIPAD S, BOWER G C, et al. Performance metrics required of next generation batteries to electrify vertical takeoff and landing (VTOL) aircraft[J]. Acs Energy Letters, 2018, 3(12): 2989-2994. |
| [27] | YANG X G, LIU T, GE S H, et al. Challenges and key requirements of batteries for electric vertical takeoff and landing aircraft[J]. Joule, 2021, 5(7): 1644-1659. |
| [28] | BILLS A, SRIPAD S, FREDERICKS W L, et al. Performance metrics required of next-generation batteries to electrify commercial aircraft[J]. Acs Energy Letters, 2020, 5(2): 663-668. |
| [29] | FAN X L, CHEN L, BORODIN O, et al. Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries [J]. Nature Nanotechnology, 2018, 13: 715-722. |
| [30] | SAMSON M, PATEL A, KWANGCHUN K, et al. Cell selection trade study for generic electrified vertical takeoff and landing applications[J]. Aiaa Aviation Forum and Ascend 2024, 2024: 4099. |
| [31] | FAY T A, SEMMLER F B, CIGARINI F, et al. Feasibility study of current and emerging battery chemistries for electric vertical take-off and landing aircraft (eVTOL) applications[J]. World Electric Vehicle Journal, 2025, 16(3): 137. |
| [32] | DIXIT M, BISHT A, ESSEHLI R, et al. Lithium-ion battery power performance assessment for the climb step of an electric vertical takeoff and landing (eVTOL) application[J]. Acs Energy Letters, 2024, 9(3): 934-940. |
| [33] | 栗志展, 秦金磊, 梁嘉宁,等. 高镍三元层状锂离子电池正极材料:研究进展、挑战及改善策略[J]. 储能科学与技术, 2022, 11(9): 2900-2920. |
| LI Z Z, QIN J L, LIANG J N, et al. High-nickel ternary layered cathode materials for lithium-ion batteries: research progress, challenges and improvement strategies[J]. Energy Storage Science and Technology, 2022, 11(9): 2900-2920. | |
| [34] | CHEN Z, WANG K L, PEI P C, et al. Advances in electrolyte safety and stability of ion batteries under extreme conditions[J]. Nano Research, 2023, 16(2): 2311-2324. |
| [35] | AYYASWAMY A, VISHNUGOPI B S, MUKHERJEE P P. Revealing hidden predicaments to lithium-ion battery dynamics for electric vertical take-off and landing aircraft[J]. Joule, 2023, 7(9): 2016-2034. |
| [36] | 赵鹤, 韩策, 程小露,等. 采用阳极预锂化技术的锂离子电池高倍率老化容量衰减机理研究[J]. 储能科学与技术, 2021, 10(2): 454-461. |
| ZHAO H, HAN C, CHENG X L, et al. Research on the capacity fading mechanism of high rate aged lithiumion batteries with anode prelithiation treatment[J]. Energy Storage Science and Technology, 2021, 10(2): 454-461. | |
| [37] | 谢朝香, 王慎航, 林瑞仕,等. 快充锂离子电池技术研究[J]. 上海航天(中英文), 2025, 42(3): 147-153,174. |
| XIE C X, WANG S H, LIN R S, et al. Research on fast-charged lithium-ion battery[J]. Aerospace Shanghai(Chinese & English), 2025, 42(3): 147-153,174. | |
| [38] | 唐德钱, 汪颖, 向静. 电动汽车锂离子动力电池加热技术研究进展[J]. 汽车制造业, 2025 (S1): 92-99. |
| TANG D Q, WANG Y, XIANG J. Advances in heating technologies for lithium-ion power batteries in electric vehicles[J]. Automobil Industrie, 2025 (S1): 92-99. | |
| [39] | XI G, XIAO M, WANG S J, et al. Polymer-based solid electrolytes: material selection, design, and application[J]. Advanced Functional Materials, 2021, 31(9): 2007598. |
| [40] | WANG S H, LA MONACA A, DEMOPOULOS G P. Composite solid-state electrolytes for all solid-state lithium batteries: progress, challenges and outlook[J]. Energy Advances, 2025, 4: 11-36. |
| [41] | YAO M X, SHI J T, LUO A H, et al. Advances in sulfide solid-state electrolytes for lithium batteries[J]. Energy Storage Materials, 2025, 75: 104018. |
| [42] | HU X, ZHANG Z J, ZHANG X, et al. External-pressure-electrochemistry coupling in solid-state lithium metal batteries[J]. Nature Reviews Materials, 2024, 9(5): 305-320. |
| [43] | 聂光辉, 高红波. 基于电动汽车动力电池类型及容量的研究[J]. 汽车维修技师, 2024 (24): 22-23. |
| NIE G H, GAO H B. Research on electric vehicle power battery types and capacity[J]. Auto Maintenance, 2024 (24): 22-23. | |
| [44] | ZHANG Q, ZHOU J J, CUI P, et al. Thin film oxide solid electrolytes towards high energy density batteries: progress of preparation methods and interface optimization[J]. Journal of Materials Chemistry A, 2023, 11(28): 15122-15139. |
| [45] | ZHANG Y N, YU J M, SHI H S, et al. Fiber-reinforced ultrathin solid polymer electrolyte for solid-state lithium-metal batteries[J]. Advanced Functional Materials, 2025, 35(25): 2421054. |
| [46] | WANG Q, ZHANG Y M, YAO M, et al. A lithium-selective "OR-gate" enables fast-kinetics and ultra-stable Li-rich cathodes for polymer-based solid-state batteries[J]. Energy & Environmental Science, 2025, 18(6): 2931-2939. |
| [47] | AN H W, LI M L, LIU Q S, et al. Strong Lewis-acid coordinated PEO electrolyte achieves 4.8 V-class all-solid-state batteries over 580 Wh kg-1[J]. Nature Communications, 2024, 15(1): 9150. |
| [48] | BAO C S, ZHENG C J, WU M F, et al. 12 μm-thick sintered garnet ceramic skeleton enabling high-energy-density solid-state lithium metal batteries[J]. Advanced Energy Materials, 2023, 13(13): 2204028. |
| [49] | XU Y N, GUO Y, ZHANG X D, et al. Tailoring highly ion-conductive and stabled PVDF-based solid electrolyte via surface coordination chemistry[J]. Advanced Functional Materials, 2025, 35(22): 2422461. |
| [50] | HAN F, ZHU Y, HE X, et al. Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes[J]. Advanced Energy Materials, 2016, 6(8): 1501590. |
| [51] | LI Y Y, LI J W, ZENG Z, et al. Surface-reconstructed high-nickel cathodes for ultrastable 4.5 V tolerant sulfide-based all-solid-state batteries[J]. Acs Energy Letters, 2025, 10(5): 2203-2211. |
| [52] | HU L, REN Y L, WANG C W, et al. Fusion bonding technique for solvent-free fabrication of all-solid-state battery with ultrathin sulfide electrolyte[J]. Advanced Materials, 2024, 36(29): 2401909. |
| [53] | YANG S B, YAN J, CHOU J, et al. High Li+ coordination entropy reducing the interaction between Li+ and polymer chains to improve Li+ transport for solid-state Lithium metal batteries[J]. Advanced Functional Materials, 2025: 2502741. |
| [54] | LIN Z T, LIU S C, CUI C, et al. Strategies for achieving fast-charge and high-voltage polymer-based solid-state lithium metal batteries[J]. Science China-Chemistry, 2025, 68: 1-22. |
| [55] | GAO M J, ZHOU D, WEN B, et al. Weak interaction in polymer electrolyte enables fast charging of solid-state lithium batteries[J]. Advanced Functional Materials, 2025, 35(30): 2500727. |
| [56] | NIE Y H, LUO D, YANG T Z, et al. Ultrathin electrolyte membranes with reinforced concrete structure for fast-charging solid-state lithium metal batteries[J]. Advanced Materials, 2025, 37(29): 2504092. |
| [57] | YANG K, MA J B, LI Y H, et al. Weak-interaction environment in a composite electrolyte enabling ultralong-cycling high-voltage solid-state lithium batteries[J]. Journal of the American Chemical Society, 2024, 146(16): 11371-11381. |
| [58] | PEI F, HUANG Y M, WU L, et al. Multisite crosslinked poly(ether-urethane)-based polymer electrolytes for high-voltage solid-state lithium metal batteries[J]. Advanced Materials, 2024, 36(49): 2409269. |
| [59] | MA T H, WU D X, WANG Z X, et al. In-situ cathode coating for all-solid-state batteries by freeze-drying technology[J]. Nano Energy, 2024, 124: 109522. |
| [60] | WANG Z, MU Z, MA T, et al. In situ formed Li3N networks by soft carbon-Si3N4 for superior all-solid-state lithium-metal batteries[J]. Advanced Energy Materials, 2024, 14(26): 2400003. |
| [61] | GENG Z, HUANG Y L, SUN G C, et al. In-situ polymerized solid-state electrolytes with stable cycling for Li/ LiCoO2 batteries[J]. Nano Energy, 2022, 91: 106679. |
| [62] | 陈昕, 赵宁, 刘桂贤,等. 当前固体电解质与固态电池技术成熟度分析[J]. 电源技术, 2024, 48(6): 969-984. |
| CHEN X, ZHAO N, LIU G X, et al. Analysis of technology readiness level of solid-state electrolyte and solid-state battery[J]. Chinese Journal of Power Sources, 2024, 48(6): 969-984. | |
| [63] | LEE M J, HAN J, LEE K, et al. Elastomeric electrolytes for high-energy solid-state lithium batteries[J]. Nature, 2022, 601(7892): 217-222. |
| [64] | FAN W Q, GOU J R, HUANG Y, et al. "Peapod-like" fiber network: a universal strategy for composite solid electrolytes to inhibit lithium dendrite growth in solid-state Lithium metal batteries[J]. Nano Letters, 2024, 24(29): 9050-9057. |
| [65] | JING S H, LU Y, HUANG Y T, et al. High-performance sheet-type sulfide all-solid-state batteries enabled by dual-function Li4.4Si alloy-modified nano silicon anodes[J]. Advanced Materials, 2024, 36(40): 2312305. |
| [66] | ZHOU X R, YANG T Z, JIA S F, et al. In situ-polymerized high-entropy-driven solid polymer electrolyte for safer solid-state lithium metal batteries[J]. Acs Applied Materials & Interfaces, 2025, 17(20): 29478-29487. |
| [67] | ZHU Q N, YANG K, CHEN L K, et al. Activating interfacial ion exchange in composite electrolytes to realize high-rate and long-cycling solid-state lithium batteries[J]. Angewandte Chemie-International Edition, 2025, 64(23): e202425221. |
| [68] | WEI C, CHEN S, YU C, et al. Achieving high-performance Li6.5Sb0.5Ge0.5S5I-based all-solid-state lithium batteries[J]. Applied Materials Today, 2023, 31: 101770. |
| [69] | 曹锦珠, 孙传灏, 桑林. 高比能量型固态电池电性能参数试验方法研究[J]. 信息技术与标准化, 2025 (8): 67-70. |
| CAO J Z, SUN C H, SANG L. Research on test method of electric performance parameters for high specific energy solid-state battery[J]. Information Technology & Standardization, 2025 (8): 67-70. | |
| [70] | MANTHIRAM A, YU X, WANG S. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nature Reviews Materials, 2017, 2(4): 16103. |
| [71] | TOGHYANI S, BAAKES F, ZHANG N X, et al. Model-based design of high energy all-solid-state Li batteries with hybrid electrolytes[J]. Journal of the Electrochemical Society, 2022, 169(4): 040550. |
| [72] | LAUE V, WOLFF N, RöDER F, et al. Modeling the influence of mixing strategies on microstructural properties of all-solid-state electrodes[J]. Energy Technology, 2020, 8(2): 1801049. |
| [73] | XIE Y, SONG Z Y, YANG R, et al. An improved velocity planning method for eVTOL aircraft based on differential evolution algorithm considering flight economy[J]. IEEE Transactions on Transportation Electrification, 2025, 11(1): 3980-3995. |
| [74] | STOLZ L, HOCHSTÄDT S, RÖSER S, et al. Single-ion versus dual-ion conducting electrolytes: the relevance of concentration polarization in solid-state batteries[J]. Acs Applied Materials & Interfaces, 2022, 14(9): 11559-11566. |
| [75] | LIU Y, BAI Y, JAEGERMANN W, et al. Impedance modeling of solid-state electrolytes: influence of the contacted space charge layer[J]. Acs Applied Materials & Interfaces, 2021, 13(4): 5895-5906. |
| [76] | ASHERI A, FATHIDOOST M, GLAVAS V, et al. Data-driven multiscale simulation of solid-state batteries via machine learning[J]. Computational Materials Science, 2023, 226: 112186. |
| [77] | JIANG F S, REN Y, TANG T, et al. A physics-enhanced online joint estimation method for SOH and SOC of lithium-ion batteries in eVTOL aircraft applications[J]. Journal of Energy Storage, 2025, 112: 115567. |
| [78] | CLARKE M A, ALONSO J J. Forecasting the operational lifetime of battery-powered electric aircraft[J]. Journal of Aircraft, 2023, 60(1): 47-55. |
| [79] | 葛科. 基于AFFRLS-AEKF的电池SOC估计方法[J]. 信息技术与信息化, 2024 (12): 179-185. |
| GE K. A battery SOC estimation method based on AFFRLS-AEKF[J]. Information Technology and Informatization, 2024 (12): 179-185. | |
| [80] | WANG Z, MA Y, GAO J, et al. Remaining useful life prediction for solid-state lithium batteries based on spatial–temporal relations and neuronal ODE-assisted KAN[J]. Reliability Engineering & System Safety, 2025, 260: 111003. |
| [81] | JIANG S, XIONG R, CHEN C, et al. Estimation of parameters and state of charge for solid-state batteries based on posterior cramer-Rao lower bound analysis[J]. IEEE Transactions on Transportation Electrification, 2025, 11(1): 3773-3784. |
| [82] | SUN B X, PANG J F, ZHU L Y, et al. A novel state of charge estimation method based on electrochemical impedance spectroscopy for solid-state batteries of next-generation space power sources under different states of health[J]. Space-Science & Technology, 2025, 5: 0198. |
| [83] | WANG Z X, MA Y, GAO J W, et al. Cured memory RUL prediction of solid-state batteries combined progressive-topologia fusion health indicators[J]. IEEE Transactions on Industrial Informatics, 2025, 21(5): 4051-4060. |
| [84] | HATHERALL O, BARAI A, NIRI M F, et al. Novel battery power capability assessment for improved eVTOL aircraft landing[J]. Applied Energy, 2024, 361: 122848. |
| [85] | 任东生, 冯旭宁, 韩雪冰,等. 锂离子电池全生命周期安全性演变研究进展[J]. 储能科学与技术, 2018, 7(6): 957-966. |
| REN D S, FENG X N, HAN X B, et al. Recent progress on evolution of safety performance of lithium-ion battery during aging process[J]. Energy Storage Science and Technology, 2018, 7(6): 957-966. | |
| [86] | CHEN S Y, PENG Q K, WEI Z S, et al. Revealing the quasi-solid-state electrolyte role on the thermal runaway behavior of lithium metal battery[J]. Energy Storage Materials, 2024, 70: 103481. |
| [87] | LU J Z, ZHOU J H, CHEN R S, et al. 4.2 V poly(ethylene oxide)-based all-solid-state lithium batteries with superior cycle and safety performance[J]. Energy Storage Materials, 2020, 32: 191-198. |
| [88] | YUAN X F, SUN C, DUAN J N, et al. A polyoxometalate-based polymer electrolyte with an improved electrode interface and ion conductivity for high-safety all-solid-state batteries[J]. Journal of Materials Chemistry A, 2019, 7(26): 15924-15932. |
| [89] | WANG J Y, CHEN R S, YANG L F, et al. Raising the intrinsic safety of layered oxide cathodes by surface re-lithiation with LLZTO garnet-type solid electrolytes[J]. Advanced Materials, 2022, 34(19). |
| [90] | VISHNUGOPI B S, HASAN M T, ZHOU H W, et al. Interphases and electrode crosstalk dictate the thermal stability of solid-state batteries[J]. Acs Energy Letters, 2022, 8(1): 398-407. |
| [91] | CHEN R S, NOLAN A M, LU J Z, et al. The thermal stability of Lithium solid electrolytes with metallic Lithium[J]. Joule, 2020, 4(4): 812-821. |
| [92] | HE Y S, WANG J J, RONG C R, et al. Status of cell-level thermal safety assessments toward optimization of all-solid-state batteries[J]. Cell Reports Physical Science, 2024, 5(7): 102056. |
| [93] | ZHAO C R, MAZO J R, VERSTRAETE D. Optimisation of a liquid cooling system for eVTOL aircraft: impact of sizing mission and battery size[J]. Applied Thermal Engineering, 2024, 246: 122988. |
| [94] | WU Z W, LIAN W L, CHEN B Y, et al. Research on battery heat generation characteristics and thermal management system applied to a typical eVTOL[J]. Applied Thermal Engineering, 2024, 257: 124187. |
| [95] | GE S H, LENG Y J, LIU T, et al. A new approach to both high safety and high performance of lithium-ion batteries[J]. Science Advances, 2020, 6(9): 7633. |
| [96] | YANG R, XIE Y, LI K N, et al. Thermal characteristics of solid-state battery and its thermal management system based on flat heat pipe[J]. Applied Thermal Engineering, 2024, 252: 123575. |
| [97] | 熊瑞, 朱宇华, 张骞慧,等. 锂离子电池低温加热技术研究进展及应用综述[J]. 机械工程学报: 1-24. |
| XIONG R, ZHU Y H, ZHANG Q H, et al. Review on research progress and application of low-temperature heating techniques for lithium-ion batteries[J]. Journal of Mechanical Engineering: 1-24. | |
| [98] | YE Y S, HUANG W X, XU R, et al. Cold-starting all-solid-state batteries from room temperature by thermally modulated current collector in sub-minute[J]. Advanced Materials, 2022, 34(36): 2202848. |
| [99] | DOUX J M, YANG Y Y C, TAN D H S, et al. Pressure effects on sulfide electrolytes for all solid-state batteries[J]. Journal of Materials Chemistry A, 2020, 8(10): 5049-5055. |
| [100] | FINCHER C D, ATHANASIOU C E, GILGENBACH C, et al. Controlling dendrite propagation in solid-state batteries with engineered stress[J]. Joule, 2022, 6(12): 2794-2809. |
| [101] | KLIMPEL M, ZHANG H Y, PAGGIARO G, et al. Assessment of critical stack pressure and temperature in Li-garnet batteries[J]. Advanced Materials Interfaces, 2024, 11(8): 2300948. |
| [102] | GIL-GONZáLEZ E, YE L H, WANG Y C, et al. Synergistic effects of chlorine substitution in sulfide electrolyte solid state batteries[J]. Energy Storage Materials, 2022, 45: 484-493. |
| [103] | JEONG H T, KIM W J. Deformation mechanism maps of pure lithium: their application in determining stack pressure for all-solid-state lithium-ion batteries[J]. Acs Energy Letters, 2024, 9(7): 3237-3251. |
| [104] | AHMED R A, EBECHIDI N, REISYA I, et al. Pressure-induced interfacial contacts and the deformation in all solid-state Li-ion batteries[J]. Journal of Power Sources, 2022, 521: 230939. |
| [105] | KöRBER N, LU Y S, FRIESS B, et al. Meso-scale mechanical characterization of polymeric, oxidic and sulfidic solid-state electrolytes until failure[J]. Journal of Energy Storage, 2024, 83: 110643. |
| [106] | GU J W, XU R Z, CHEN B B, et al. NMC811-Li6PS5Cl-Li/in all-solid-state battery capacity attenuation based on temperature-pressure-electrochemical coupling model[J]. Journal of the Electrochemical Society, 2023, 170(4): 040504. |
| [107] | CHEN Y T, JANG J, OH J A S, et al. Enabling uniform and accurate control of cycling pressure for all-solid-state batteries[J]. Advanced Energy Materials, 2024, 14(30): 2304327. |
| [108] | LEE C, KIM J Y, BAE K Y, et al. Enhancing electrochemomechanics: how stack pressure regulation affects all-solid-state batteries[J]. Energy Storage Materials, 2024, 66: 103196. |
| [109] | TAN D H S, MENG Y S, JANG J. Scaling up high-energy-density sulfidic solid-state batteries: a lab-to-pilot perspective[J]. Joule, 2022, 6(8): 1755-1769. |
| [110] | JEONG J, KWAK E, KIM J H, et al. Novel active management of compressive pressure on a lithium-ion battery using a phase transition actuator[J]. Energy Reports, 2022, 8: 10762-10775. |
| [1] | 周铨,贾青,夏超,莫礽,韦欢夏,张英朝,胡强强,杨志刚. 复合翼构型电动垂直起降飞行器气动特性数值研究[J]. 汽车工程, 2025, 47(11): 2103-2112. |
| [2] | 罗勇, 祁朋伟, 黄欢, 王佳男, 王毅, 李沛然. 基于容量修正的安时积分SOC估算方法研究*[J]. 汽车工程, 2020, 42(5): 681-687. |
| [3] | 罗勇, 祁朋伟, 阚英哲, 李沛然, 刘莉, 崔环宇. 基于模拟退火算法的锂电池模型参数辨识*[J]. 汽车工程, 2018, 40(12): 1418-1425. |
|
||