汽车工程 ›› 2020, Vol. 42 ›› Issue (1): 100-107.doi: 10.19562/j.chinasae.qcgc.2020.01.015

• • 上一篇    下一篇

基于4种典型神经网络识别路面不平度的研究*

李杰, 郭文翠, 赵旗, 谷盛丰   

  1. 吉林大学,汽车仿真与控制国家重点实验室,长春 130025
  • 收稿日期:2018-11-27 发布日期:2020-01-21
  • 通讯作者: 李杰,教授,博士生导师,E-mail:lj@jlu.edu.cn
  • 基金资助:
    *中国汽车产业创新发展联合基金重点项目(U1564213)、国家自然科学基金国际(地区)合作与交流重点项目(61520106008)和省校共建项目(SXGJSF2017-2-1-1)资助。

Study on Road Roughness Identification Based on Four Typical Neural Networks

Li Jie, Guo Wencui, Zhao Qi, Gu Shengfeng   

  1. Jilin University, State Key Laboratory of Automotive Simulation and Control, Changchun 130025
  • Received:2018-11-27 Published:2020-01-21

摘要: 为识别路面不平度,对4种典型神经网络及其应用选择、输入方案优化和评价指标进行研究,提出4种典型神经网络输入选择和输入组合优化的解决方案。建立了汽车系统振动的4自由度平面模型,通过仿真获得神经网络的输入和输出。采用正交试验设计确定了每种神经网络的32个输入方案,在常用的B级路面和车速60 km/h下得到每种神经网络输入方案的评价指标,通过方差分析选出每种神经网络的最优输入方案和4种典型神经网络中的最优神经网络。研究结果表明,4种典型神经网络中,NARX神经网络是识别路面不平度的最优神经网络,其最优输入方案的相关系数和均方根误差分别为96.75%和0.003 3。

关键词: 路面不平度识别, 典型神经网络, 最优神经网络, 输入方案优化

Abstract: To identify road roughness, four typical neural networks and their application selection, input scheme optimization and evaluation indicators are studied, and a solution scheme is proposed for the input selection and input combination optimization of four typical neural networks. A four DOF plane model for vehicle system vibration is built, with the input and output of neural networks obtained by simulation. 32 input schemes of each neural network are determined by orthogonal experimental design, the evaluation indicators for the input scheme of each neural network under common road grade B and 60 km/h driving speed are obtained, and the optimal input scheme of each neural network and the optimal neural network among four typical ones are selected through variance analysis. The results show that among four typical neural networks, NARX neural network is the optimal one in identifying road roughness with its correlation coefficient and root mean square error of optimal input scheme being 96.75% and 0.003 3 respectively

Key words: road roughness identification, typical neural network, optimal neural network, input scheme optimization