汽车工程 ›› 2021, Vol. 43 ›› Issue (3): 405-413.doi: 10.19562/j.chinasae.qcgc.2021.03.014

• • 上一篇    下一篇

基于驾驶风格的前撞预警系统报警策略

金辉(),李昊天   

  1. 北京理工大学机械与车辆学院,北京 100081
  • 收稿日期:2020-09-02 修回日期:2020-11-14 出版日期:2021-03-25 发布日期:2021-03-26
  • 通讯作者: 金辉 E-mail:jinhui@bit.edu.cn
  • 基金资助:
    国家自然科学基金(51875040)

Alarm Strategy for Frontal Crash Warning System Based on Driving Style

Hui Jin(),Haotian Li   

  1. School of Mechanical Engineering,Beijing Institute of Technology,Beijing 100081
  • Received:2020-09-02 Revised:2020-11-14 Online:2021-03-25 Published:2021-03-26
  • Contact: Hui Jin E-mail:jinhui@bit.edu.cn

摘要:

考虑驾驶风格的影响,设计了一种优化的纵向相对距离预测模型,并基于此模型改进了前撞预警系统报警策略。驾驶风格分类结合了分位点法和信息熵法,以不同方式进行特征提取,使用k?means方法聚类样本数据。基于长短期记忆模型,设计了编码器-解码器模型用于预测,以上述分类的全部数据训练模型的共用部分参数,以提高模型的泛化能力;而以3种驾驶风格对应数据集对模型的个性化部分参数进行更高学习率的训练。利用上述预测模型,对基于欧洲新车评估计划-自动紧急制动系统测试协议的前撞预警策略进行改进,使误报警次数从123降低至50。

关键词: 驾驶风格, 纵向相对距离预测, 前撞预警策略

Abstract:

With consideration of driving style, an optimized prediction model for longitudinal relative distance is designed, based on which an alarm strategy for the frontal?crash warning system is improved. The combination of quantile method and information entropy method is adopted for driving style classification to extract features in different ways, and k?means method is used to cluster sample data. Based on long short-term memory model, the encoder?decoder model is designed for prediction. All the data of above classifications are used to train the sharing parameters of model for improving its generalization ability, while the personalized parameters are trained with a higher learning rate by the corresponding data set of three driving styles. Utilizing the above?mentioned prediction models, the warning strategy for frontal crash based on European NCAP?AEB test protocol is improved, and as a result, the number of false alarms reduces from 123 to 50.

Key words: driving style, longitudinal relative distance prediction, frontal crash warning strategy