汽车工程 ›› 2022, Vol. 44 ›› Issue (4): 617-637.doi: 10.19562/j.chinasae.qcgc.2022.04.017
所属专题: 新能源汽车技术-动力电池&燃料电池2022年
收稿日期:
2021-11-02
修回日期:
2021-12-03
出版日期:
2022-04-25
发布日期:
2022-04-22
通讯作者:
韩雪冰,欧阳明高
E-mail:hanxuebing@tsinghua.edu.cn;ouymg@tsinghua.edu.cn
基金资助:
Yanan Wang,Xuebing Han(),Languang Lu,Xuning Feng,Jianqiu Li,Minggao Ouyang(
)
Received:
2021-11-02
Revised:
2021-12-03
Online:
2022-04-25
Published:
2022-04-22
Contact:
Xuebing Han,Minggao Ouyang
E-mail:hanxuebing@tsinghua.edu.cn;ouymg@tsinghua.edu.cn
摘要:
本文针对电动汽车动力电池系统现存关键问题和主要需求,从材料科学与系统科学等多个层面对动力电池及其相关技术展开评述,聚焦于智能电池、智能管理和智慧能源三大方向阐述动力电池系统从感知、监测、管理直至能源互动的研究现状及发展趋势,为电动汽车动力系统在安全性、动力性、耐久性等多维度的综合管理和在能源与交通的智慧互联研究提供参考。
王亚楠,韩雪冰,卢兰光,冯旭宁,李建秋,欧阳明高. 电动汽车动力电池研究展望:智能电池、智能管理与智慧能源[J]. 汽车工程, 2022, 44(4): 617-637.
Yanan Wang,Xuebing Han,Languang Lu,Xuning Feng,Jianqiu Li,Minggao Ouyang. Prospects of Research on Traction Batteries for Electric Vehicles: Intelligent Battery, Wise Management, and Smart Energy[J]. Automotive Engineering, 2022, 44(4): 617-637.
1 | LI W, RENTEMEISTER M, BADEDA J, et al. Digital twin for battery systems: cloud battery management system with online state-of-charge and state-of-health estimation[J]. Journal of Energy Storage, 2020, 30: 101557. |
2 | WU B, WIDANAGE W D, YANG S, et al. Battery digital twins: perspectives on the fusion of models, data and artificial intelligence for smart battery management systems[J]. Energy and AI, 2020, 1: 100016. |
3 | YANG S, HE R, ZHANG Z, et al. CHAIN: Cyber hierarchy and interactional network enabling digital solution for battery full-lifespan management[J]. Matter, 2020, 3(1): 27-41. |
4 | WU J, LIU X, MENG J, et al. Cloud-to-edge based state of health estimation method for Lithium-ion battery in distributed energy storage system[J]. Journal of Energy Storage, 2021, 41: 102974. |
5 | ZHANG Y, LIU H, ZHANG Z, et al. Cloud computing-based real-time global optimization of battery aging and energy consumption for plug-in hybrid electric vehicles[J]. Journal of Power Sources, 2020, 479: 229069. |
6 | YANG S, ZHANG Z, CAO R, et al. Implementation for a cloud battery management system based on the CHAIN framework[J]. Energy and AI, 2021, 5: 100088. |
7 | LEE C Y, PENG H C, LEE S J, et al. A flexible three-in-one microsensor for real-time monitoring of internal temperature, voltage and current of lithium batteries[J]. Sensors, 2015, 15(5):11485-11498. |
8 | LI Y, WEI C, SHENG Y, et al. Swelling force in lithium-ion power batteries[J]. Industrial and Engineering Chemistry Research, 2020, 59(27):12313-12318. |
9 | SCHMITT J, KRAFT B, SCHMIDT J P, et al. Measurement of gas pressure inside large-format prismatic lithium-ion cells during operation and cycle aging[J]. Journal of Power Sources, 2020, 478(14):228661. |
10 | FORTIER A, TSAO M, WILLIARD N, et al. Preliminary study on integration of fiber optic bragg grating sensors in li-ion batteries and in situ strain and temperature monitoring of battery cells[J]. Energies, 2017, 10(7):838. |
11 | HUANG J, BLANQUER L A, BONEFACINO J, et al. Operando decoding of chemical and thermal events in commercial Na(Li)-ion cells via optical sensors[J]. Nature Energy, 2020,5(9): 674-683. |
12 | SUSANA N, MICAEL N, LORENZO G, et al. Internal and external temperature monitoring of a li-ion battery with fiber bragg grating sensors[J]. Sensors, 2016, 16(9). |
13 | FLEMING J, AMIETSZAJEW T, MCTURK E, et al. Development and evaluation of in-situ instrumentation for cylindrical Li-ion cells using fibre optic sensors[J]. HardwareX, 2018: S2468067217300809. |
14 | SASCHA K, KAI B, ROBERT K. Fast thermal runaway detection for lithium-ion cells in large scale traction batteries[J]. Batteries, 2018, 4(2):16. |
15 | OLEG L, NICOLAI A, MISHRA A K, et al. A single CuO/Cu2O/Cu micro-wire covered by a nano-wire network as gas sensor for the detection of battery hazards[J]. ACS Applied Materials & Interfaces, 2020. |
16 | FENG X N, FANG M, HE X M, et al. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry [J]. J Power Sources, 2014, 255: 294-301. |
17 | LU H, FANG H, HE X, et al. Effect of pressure on charge and discharge performance and expansion of ternary lithium battery [J]. Chinese Journal of Power Sources, 2017, 41(5): 686-688. |
18 | RAIJMAKERS L H J, DANILOV D L, EICHEL R A, et al. A review on various temperature-indication methods for li-ion batteries [J]. Applied Energy, 2019, 240: 918-945. |
19 | SUN L, SUN W, YOU F Q. Core temperature modelling and monitoring of lithium-ion battery in the presence of sensor bias [J]. Applied Energy, 2020, 271. |
20 | LIU X T, HE Y, ZENG G J, et al. State-of-power estimation of li-ion batteries considering the battery surface temperature [J]. Energy Technology, 2018, 6(7): 1352-1360. |
21 | WANG C Y, ZHANG G S, GE S H, et al. Lithium-ion battery structure that self-heats at low temperatures [J]. Nature, 2016, 529(7587): 515. |
22 | LI Y, GAO X, DU J, et al. Drive circuitry of an electric vehicle enabling rapid heating of the battery pack at low temperatures[J]. iScience, 2021, 24(1):101921. |
23 | YANG X G, ZHANG G S, GE S H, et al. Fast charging of lithium-ion batteries at all temperatures [J]. P Natl Acad Sci USA, 2018, 115(28): 7266-7271. |
24 | DREES R, LIENESCH F, KURRAT M. Fast charging lithium-ion battery formation based on simulations with an electrode equivalent circuit model [J]. J Energy Storage, 2021, 36: 10. |
25 | 沈萍. 基于模型的电池状态高精度联合估计研究 [D]. 北京: 清华大学, 2018. |
SHEN P. Study on the model-based state co-estimation for lithium-ion batteries [D]. Beijing: Tsinghua University, 2018. | |
26 | TIAN J P, XIONG R, SHEN W X, et al. State-of-charge estimation of LiFePO4 batteries in electric vehicles: A deep-learning enabled approach [J]. Appl Energ, 2021, 291. |
27 | 刘光明, 欧阳明高, 卢兰光, 等. 基于电池能量状态估计和车辆能耗预测的电动汽车续驶里程估计方法研究 [J]. 汽车工程, 2014, 36(11): 1302-1311. |
LIU G M, OUYANG M G, LU L G, et al. Driving range estimation for electric vehicles based on battery energy state estimation and vehicle energy consumption prediction [J]. Automotive Engineering, 2014, 36(11): 1302-1311. | |
28 | REN D S, LU L G, SHEN P, et al. Battery remaining discharge energy estimation based on prediction of future operating conditions [J]. J Energy Storage, 2019, 25: 11. |
29 | 刘光明. 面向电动汽车续驶里程估计的电池剩余放电能量预测研究 [D]. 北京: 清华大学, 2015. |
LIU G M. Prediction of battery remaining discharge energy oriented for remaining driving range estimation of electric vehicles [D]. Beijing: Tsinghua University, 2015. | |
30 | HAN X, LU L, ZHENG Y, et al. A review on the key issues of the lithium ion battery degradation among the whole life cycle [J]. eTransportation, 2019, 1: 100005. |
31 | HAN X, OUYANG M, LU L, et al. A comparative study of commercial lithium ion battery cycle life in electrical vehicle: aging mechanism identification [J]. J Power Sources, 2014, 251: 38-54. |
32 | LI Y L, FENG X N, REN D S, et al. Thermal runaway triggered by plated lithium on the anode after fast charging [J]. ACS Applied Material Interfaces, 2019, 11(50): 46839-46850. |
33 | SEO M, PARK M, SONG Y, et al. Online detection of soft internal short circuit in lithium-ion batteries at various standard charging ranges [J]. IEEE ACCESS, 2020, 8: 70947-70959. |
34 | LIU J H, CHU Z Y, LI H L, et al. Lithium-plating-free fast charging of large-format lithium-ion batteries with reference electrodes [J]. Int J Energy Research, 2021, 45(5): 7918-7932. |
35 | GÜNTHER T, SCHREINER D, METKAR A, et al. Classification of calendering‐induced electrode defects and their influence on subsequent processes of lithium‐ion battery production[J]. Energy Technology, 2019,8(2):1900026. |
36 | DAVID L, RUTHER R E, MOHANTY D, et al. Identifying degradation mechanisms in lithium-ion batteries with coating defects at the cathode[J]. Applied Energy, 2018,231:446-455. |
37 | TANG M, ALBERTUS P, NEWMAN J. Two-dimensional modeling of lithium deposition during cell charging[J]. Journal of The Electrochemical Society, 2009,156(5): A390. DOI: 10.1149/1.3095513. |
38 | CANNARELLA J, ARNOLD C B. Ion transport restriction in mechanically strained separator membranes[J]. Journal of Power Sources, 2013,226:149-155. |
39 | LOVE C T. Thermomechanical analysis and durability of commercial micro-porous polymer Li-ion battery separators[J]. Journal of Power Sources, 2011,196(5):2905-2912. |
40 | PEABODY C, ARNOLD C B. The role of mechanically induced separator creep in lithium-ion battery capacity fade[J]. Journal of Power Sources, 2011,196(19):8147-8153. |
41 | LIU X, ARNOLD C B. Effects of current density on defect-induced capacity fade through localized plating in lithium-ion batteries[J]. Journal of the Electrochemical Society, 2020. |
42 | KALNAUS S, KUMAR A, WANG Y, et al. Strain distribution and failure mode of polymer separators for Li-ion batteries under biaxial loading[J]. Journal of Power Sources, 2018,378:139-145. |
43 | LIU L, FENG X, ZHANG M, et al. Comparative study on substitute triggering approaches for internal short circuit in lithium-ion batteries[J]. Applied Energy, 2020,259:114143. |
44 | XU J, LIU Y, XIE H, et al. Surface quality assurance method for lithium-ion battery electrode using concentration compensation and partiality decision rules[J]. IEEE Transactions on Instrumentation and Measurement, 2020,69(6):3157-3169. |
45 | LI Y, FU X, WANG Y, et al. “See” the invisibles: inspecting battery separator defects via pressure drop[J]. Energy Storage Materials, 2019,16:589-596. |
46 | BAUERMANN L P, MESQUITA L V, BISCHOFF C, et al. Scanning acoustic microscopy as a non-destructive imaging tool to localize defects inside battery cells[J]. Journal of Power Sources Advances, 2020,6:100035. |
47 | YAO X, SAXENA S, SU L, et al. The explosive nature of tab burrs in li-ion batteries[J]. IEEE Access, 2019,7:45978-45982. |
48 | OUYANG M, ZHANG M, FENG X, et al. Internal short circuit detection for battery pack using equivalent parameter and consistency method[J]. Journal of Power Sources, 2015, 294: 272-283. |
49 | FENG X, WENG C, OUYANG M, et al. Online internal short circuit detection for a large format lithium ion battery[J]. Applied Energy, 2016, 161: 168-180. |
50 | PAN Y, FENG X, ZHANG M, et al. Internal short circuit detection for lithium-ion battery pack with parallel-series hybrid connections [J]. Journal of Cleaner Production, 2020, 255: 120277. |
51 | REN D, SMITH K, GUO D, et al. Investigation of lithium plating-stripping process in li-ion batteries at low temperature using an electrochemical model[J]. Journal of Electrochemical Society, 2020, 165(10): A2167-A2178. |
52 | SCHINDLER S, BAUER M, PETZL M, et al. Voltage relaxation and impedance spectroscopy as in-operando methods for the detection of lithium plating on graphitic anodes in commercial lithium-ion cells[J]. Journal of Power Sources, 2016, 304: 170-180. |
53 | ZHENG Y, LU Y, GAO W, et al. Micro-short-circuit cell fault identification method for lithium-ion battery packs based on mutual information[J]. IEEE Transaction on Industrial Electronics, 2021, 68(5): 4373-4381. |
54 | ZHENG Y, HAN X, LU L, et al. Lithium ion battery pack power fade fault identification based on Shannon entropy in electric vehicles[J]. Journal of Power Sources, 2013, 223: 136-146. |
55 | NAHA A, KHANDELWAL A, HARIHARAN K S, et al. On-board short-circuit detection of li-ion batteries undergoing fixed charging profile as in smartphone applications [J]. IEEE Transaction on Industrial Electronics, 2019, 66(11). |
56 | REICHL T, HRZINA P. Capacity detection of internal short circuit[J]. Journal of Energy Storage, 2018, 15: 345-349. |
57 | KONG X, ZHENG Y, OUYANG M, et al. Fault diagnosis and quantitative analysis of micro-short circuits for lithium-ion batteries in battery packs[J]. Journal of Power Sources, 2018, 395: 358-368. |
58 | ZHANG M, OUYANG M, LU L, et al. Battery internal short circuit detection [C]. ECS Transaction, 2017, 77(11): 217-223. |
59 | XIE J, ZHANG L, YAO T, et al. Quantitative diagnosis of internal short circuit for cylindrical li-ion batteries based on multiclass relevance vector machine[J]. Journal of Energy Storage, 2020, 32: 101957. |
60 | RATNAKUMAR B V, SMART M C. Lithium plating behavior in lithium-ion cells[J]. ECS Transactions,2010, 25(36): 241-252. |
61 | PETZL M, DANZER M A. Nondestructive detection, characterization, and quantification of lithium plating in commercial lithium-ion batteries[J]. Journal of Power Sources, 2014, 254: 80-87. |
62 | HARLOW J E, GLAZIER S L, LI J, et al. Use of asymmetric average charge- and average discharge- voltages as an indicator of the onset of unwanted lithium deposition in lithium-ion cells[J]. Journal of The Electrochemical Society, 2018, 165(16): A3595-A3601. |
63 | ZHANG Y, LI X, SU L, et al. Lithium plating detection and quantification in Li-ion cells from degradation behaviors[J]. ECS Transactions, 2016, 75(23): 37–50. |
64 | WANG Z, HONG J, LIU P, et al. Voltage fault diagnosis and prognosis of battery systems based on entropy and Z-score for electric vehicles [J]. Applied Energy, 2017, 196: 289–302. |
65 | LI X, DAI K, WANG Z, et al. Lithium-ion batteries fault diagnostic for electric vehicles using sample entropy analysis method[J]. Journal of Energy Storage, 2020, 27: 101121. |
66 | KIM J, CHO B H. An innovative approach for characteristic analysis and state-of-health diagnosis for a Li-ion cell based on the discrete wavelet transform[J]. Journal of Power Sources, 2014, 260: 115-130. |
67 | LI X, WANG Z. A novel fault diagnosis method for lithium-ion battery packs of electric vehicles[J]. Measurement, 2018, 116: 402-411. |
68 | LI D, ZHANG Z, LIU P, et al. DBSCAN-based thermal runaway diagnosis of battery systems for electric vehicles[J]. Energies, 2019, 12(15): 2977. |
69 | LI D, ZHANG Z, LIU P, et al. Battery fault diagnosis for electric vehicles based on voltage abnormality by combining the long short-term memory neural network and the equivalent circuit model[J]. IEEE Transaction on Power Electronics, 2021, 36(2): 1303-1315. |
70 | PARK J I, BAEK S H, JEONG M K, et al. Dual features functional support vector machines for fault detection of rechargeable batteries[J]. IEEE Transaction on Systems, Man, and Cybernetics—Part C: Application and Reviews, 2009, 39(4): 480-485. |
71 | PANNALA S, ZHANG M, SIEGEL J, et al. Mechanical measurements for early detection of thermal runaway induced by an internal short circuit [J]. ECS Meeting Abstracts, 2018, 1(3):368. |
72 | SU T, LYU N, ZHAO Z, et al. Safety warning of lithium-ion battery energy storage station via venting acoustic signal detection for grid application[J]. Journal of Energy Storage, 2021, 38: 102498. |
73 | HAN X, LU L, ZHENG Y, et al. A review on the key issues of the lithium ion battery degradation among the whole life cycle[J]. eTransportation, 2019, 1: 100005. |
74 | LAI X, HUANG Y, DENG C, et al. Sorting, regrouping, and echelon utilization of the large-scale retired lithium batteries: a critical review[J]. Renewable and Sustainable Energy Reviews, 2021, 146: 111162. |
75 | CHIKKANNANAVAR S B, BERNARDI D M, LIU L. A review of blended cathode materials for use in Li-ion batteries[J]. Journal of Power Sources, 2014, 248: 91-100. |
76 | GAINES L. Lithium-ion battery recycling processes: research towards a sustainable course[J]. Sustainable Materials and Technologies, 2018, 17: e00068. |
77 | RAHMAN A, AFROZ R, SAFRIN M. Recycling and disposal of lithium battery: economic and environmental approach[J]. IIUM Engineering Journal, 2017, 18(2): 238-252. |
78 | YAO Y, ZHU M, ZHAO Z, et al. Hydrometallurgical processes for recycling spent lithium-ion batteries: a critical review[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 13611-13627. |
79 | LAI X, DENG C, LI J, et al. Rapid sorting and regrouping of retired lithium-ion battery modules for echelon utilization based on partial charging curves[J]. IEEE Transactions on Vehicular Technology, 2021, 70(2): 1246-1254. |
80 | XIONG R, LI L, TIAN J. Towards a smarter battery management system: a critical review on battery state of health monitoring methods[J]. Journal of Power Sources, 2018, 405: 18-29. |
81 | LIPU M S H, HANNAN M A, HUSSAIN A, et al. A review of state of health and remaining useful life estimation methods for lithium-ion battery in electric vehicles: challenges and recommendations[J]. Journal of Cleaner Production, 2018, 205: 115-133. |
82 | LU Y, LI K, HAN X, et al. A method of cell-to-cell variation evaluation for battery packs in electric vehicles with charging cloud data[J]. eTransportation, 2020, 6: 100077. |
83 | OCA L, MIGUEL E, AGIRREZABALA E, et al. Physico-chemical parameter measurement and model response evaluation for a pseudo-two-dimensional model of a commercial lithium-ion battery[J]. Electrochimica Acta, 2021:138287. |
84 | HAN X, OUYANG M, LU L, et al. Simplification of physics-based electrochemical model for lithium ion battery on electric vehicle. part Ⅰ: diffusion simplification and single particle model[J]. Journal of Power Sources, 2015, 278:802-813. |
85 | OUYANG M, LIU G, LU L, et al. Enhancing the estimation accuracy in low state-of-charge area: a novel onboard battery model through surface state of charge determination[J]. Journal of Power Sources, 2014, 270:221-237. |
86 | LIU Y H, LUO Y. Search for an optimal rapid-charging pattern for li-ion batteries using the Taguchi approach[J]. IEEE Transactions on Industrial Electronics, 2010, 57(12):3963-3971. |
87 | ZOU C, HU X, WEI Z, et al. Electrothermal dynamics-conscious lithium-ion battery cell-level charging management via state-monitored predictive control[J]. Energy, 2017, 141:250-259. |
88 | BLOMGREN, GEORGE E. The development and future of lithium ion batteries[J]. Journal of The Electrochemical Society, 2017, 164(1): A5019-A5025. |
89 | LIU Y, ZHANG J. Self-adapting J-type air-based battery thermal management system via model predictive control[J]. Applied Energy, 2020, 263:114640. |
90 | LING Z, WANG F, FANG X, et al. A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling [J]. Applied Energy, 2015, 148:403-409. |
91 | KONG D, PENG R, PING P, et al. A novel battery thermal management system coupling with PCM and optimized controllable liquid cooling for different ambient temperatures[J]. Energy Conversion and Management, 2019:112280. |
92 | ZHONG W X, LIU X, HUI S. A novel single-layer winding array and receiver coil structure for contactless battery charging systems with free-positioning and localized charging features[J]. IEEE Transactions on Industrial Electronics, 2011, 58(9):4136-4144. |
93 | Enabling fast charging - introduction and overview[J]. Journal of Power Sources, 2017, 367(1):214-215. |
94 | CHU Z, FENG X, LIAW B, et al. Testing Lithium-ion battery with the internal reference electrode: an insight into the blocking effect[J]. Journal of the Electrochemical Society, 2018, 165(14): A3240-A3248. |
95 | LI Y, DU J, FENG X, et al. Errors in the reference electrode measurements in real lithium-ion batteries [J]. Journal of Power Sources, 2018, 481: 228933. |
96 | KEYSER M, PESARAN A, LI Q, et al. Enabling fast charging -battery thermal considerations[J]. Journal of Power Sources, 2017, 367:228-236. |
97 | WANG C Y, ZHANG G, GE S, et al. Lithium-ion battery structure that self-heats at low temperatures[J]. Nature, 2016, 529(7587):515. |
98 | LI Y, DU J, ZHOU G, et al. A rapid self-heating battery pack achieved by novel driving circuits of electric vehicle[J]. Energy Reports, 2020, 6:1016-1023. |
99 | JI Y, WANG C Y. Heating strategies for Li-ion batteries operated from subzero temperatures[J]. Electrochimica Acta, 2013. |
100 | WANG S, LU L, HAN X, et al. Virtual-battery based droop control and energy storage system size optimization of a DC microgrid for electric vehicle fast charging station[J]. Applied Energy, 2020, 259(1):114146.1-114146.12. |
101 | 刘海涛,熊雄,季宇,等.直流配电系统不同运行模式下扁平化管理与协调控制策略研究[J].中国电机工程学报,2020,40(S1):37-46. |
LIU H T, XIONG X, JI Y, et al. Research on power flat management and coordinated control strategy under different operation modes for DC distribution system [J]. Proceedings of the CSEE, 2020,40(S1):37-46. | |
102 | ZIA M F, ELBOUCHIKHI E, BENBOUZID M. Microgrids energy management systems: a critical review on methods, solutions, and prospects[J]. Applied Energy, 2018, 222: 1033–1055. |
103 | 艾欣,许佳佳.基于互动调度的微网与配电网协调运行模式研究[J].电力系统保护与控制,2013,41(1):143-149. |
AI X, XU J J. Study on the microgrid and distribution network co-operation model based on interactive scheduling [J]. Power System Protection and Control, 2013,41(1):143-149. | |
104 | ZHANG M, CHEN J. The energy management and optimized operation of electric vehicles based on microgrid[J]. IEEE Transactions on Power Delivery, 2014, 29(3): 1427–1435. |
105 | ALAM M J E, MUTTAQI K M, SUTANTO D. Effective utilization of available pev battery capacity for mitigation of solar PV impact and grid support with integrated V2G functionality[J]. IEEE Transactions on Smart Grid, 2016, 7(3): 1562–1571. |
106 | TRAN V T, ISLAM M R, MUTTAQI K M, et al. An efficient energy management approach for a solar-powered ev battery charging facility to support distribution grids[J]. IEEE Transactions on Industry Applications, 2019, 55(6): 6517–6526. |
107 | 徐青山,王栋,戴蔚莺,等.变频空调负荷虚拟同步机化改造及其参与微网互动调控[J].电力自动化设备,2020,40(3):8-14. |
XU Q S, WANG D, DAI W Y, et al. Inverter air conditioner load virtual synchronous mechanization transformation and its participation in microgrid interactive regulation [J]. Electric Power Automation Equipment, 2020,40(3):8-14. | |
108 | 康鹏,郭伟,黄伟钢,等. 区域电网电能质量问题及治理关键技术综述[J]. 电测与仪表, 2020, 749(24):6-17. |
KANG P, GUO W, HUANG W G, et al. Review of the power quality problem and key treatment technology of regional power grid [J]. Electrical Measurement & Instrumentation, 2020, 749(24):6-17. | |
109 | AUNEDI M, STRBAC G. Whole-system benefits of vehicle-to-grid services from electric vehicle fleets[C]. Fifteenth International Conference on Ecological Vehicles and Renewable Energies, 2020. |
110 | RICHARDSON D B. Electric vehicles and the electric grid: a review of modeling approaches, impacts, and renewable energy integration[J]. Renewable & Sustainable Energy Reviews, 2013, 19(Mar.):247-254. |
111 | STRBAC G, PUDJIANTO D, AUNEDI M, et al. Cost-effective decarbonization in a decentralized market: the benefits of using flexible technologies and resources[J]. IEEE Power and Energy Magazine, 2019. |
112 | LI Y, DAVIS C, LUKSZO Z, et al. Electric vehicle charging in China's power system: energy, economic and environmental trade-offs and policy implications[J]. Applied Energy, 2016, 173:535-554. |
113 | DENHOLM P, SHORT W. An evaluation of utility system impacts and benefits of optimally dispatched plug-in hybrid electric vehicles[J]. Office of Scientific & Technical Information Technical Reports, 2006. |
114 | KIVILUOMA J, MEIBOM P. Methodology for modelling plug-in electric vehicles in the power system and cost estimates for a system with either smart or dumb electric vehicles[J]. Energy, 2011, 36(3):1758-1767. |
115 | WOLINETZ M, AXSEN J, PETERS J, et al. Simulating the value of electric-vehicle–grid integration using a behaviourally realistic model[J]. Nature Energy, 2018, 3(2):132-139. |
116 | LIU H, HUANG K, WANG N, et al. Optimal dispatch for participation of electric vehicles in frequency regulation based on area control error and area regulation requirement[J]. Applied Energy, 2019, 240:46-55. |
117 | HÊMIN G, ATARODI A, AMINI S, et al. Optimal energy storage system-based virtual inertia placement: a frequency stability point of view[J]. IEEE Transactions on Power Systems, 2020, 35(6): 4824-4835. |
118 | XING W, W H, LU L, et al. An adaptive virtual inertia control strategy for distributed battery energy storage system in microgrids[J]. Energy, 2021, 233:121155. |
119 | MARTINENAS S. Enabling technologies for smart grid integration and interoperability of electric vehicles[D]. Copenhagen, Technical University of Denmark, 2017. |
120 | WU C, MOHSENIAN-RAD H, HUANG J, et al. Vehicle-to-aggregator interaction game[J]. IEEE Transactions on Smart Grid, 2012, 3(1): 434-442. |
121 | PARSONS G R, HIDRUE M K, KEMPTON W, et al. Willingness to pay for vehicle-to-grid (V2G) electric vehicles and their contract terms[J]. Energy Economics, 2014, 42(1):313-324. |
122 | GESKE J, SCHUMANN D. Willing to participate in vehicle-to-grid (V2G)? why not! [J]. Energy Policy, 2018, 120:392-401. |
No related articles found! |
|