汽车工程 ›› 2025, Vol. 47 ›› Issue (8): 1546-1558.doi: 10.19562/j.chinasae.qcgc.2025.08.011

• • 上一篇    

基于金属相变材料储热的严寒地区电动客车热管理系统研究

谢鹏(),蔡振豪,罗睿林,王靖飞,林程   

  1. 北京理工大学机械与车辆学院,电动车辆国家工程研究中心,北京 100081
  • 收稿日期:2025-04-11 修回日期:2025-04-30 出版日期:2025-08-25 发布日期:2025-08-18
  • 通讯作者: 谢鹏 E-mail:p.xie@bit.edu.cn
  • 基金资助:
    国家自然科学基金青年科学基金(52302450);北京市自然科学基金面上项目(3232034);电动汽车产业技术创新战略联盟共性技术课题资助

Research on Thermal Management System of Electric Buses for Extreme Cold Regions Based on Thermal Energy Storage with Metallic Phase Change Material

Peng Xie(),Zhenhao Cai,Ruilin Luo,Jingfei Wang,Cheng Lin   

  1. School of Mechanical Engineering,Beijing Institute of Technology,National Engineering Research Center of Electric Vehicles,Beijing 100081
  • Received:2025-04-11 Revised:2025-04-30 Online:2025-08-25 Published:2025-08-18
  • Contact: Peng Xie E-mail:p.xie@bit.edu.cn

摘要:

针对严寒地区大型纯电动客车冬季运行面临的续航里程严重衰减、热车时间过长等问题,本文突破传统低温热管理技术的局限,提出了基于金属相变材料储热的整车热管理解决方案。设计了面向极寒工况的铝硅合金相变储热装置,并基于整车系统仿真,分析了储热装置容量配置对车辆低温性能的影响。结果表明,所设计的储热装置具备超过235 W·h/kg的质量能量密度和429 W·h/L的体积能量密度,储能成本仅为锂离子电池系统的5%~20%。在-40 ℃环境下,增设110 kW·h的储热单元可使续航里程提升115.5%,而仅配置8 kW·h的储热装置就能将热车时间缩短65%。本文为严寒地区纯电动客车的大规模推广提供了兼具技术可行性与经济合理性的热管理新范式,对推动高纬度地区公共交通全面电动化具有重要意义。

关键词: 热能储存, 电动客车, 整车热管理, 金属相变材料

Abstract:

For the problems faced by electric buses in cold regions during winter operation, such as severe reduction in driving range and excessively long preheating time, this research breaks through the limitation of traditional low-temperature thermal management technologies and proposes a vehicle thermal management solution based on thermal energy storage (TES) with metallic phase change material. A phase change TES device made of aluminum-silicon alloy for cold working conditions is designed. Then based on vehicle system simulation, the influence of capacity configuration of TES device on vehicle low-temperature performance is analyzed. The results indicate that the TES device has a mass energy density of 235 W·h/kg and a volume energy density of 429 W·h/L, whose energy storage cost is only 5%~20% of that of lithium-ion battery systems. Besides, at -40 ℃, adding a 110 kW·h TES device can increase the driving range by 115.5% and adding an 8 kW·h TES device can shorten the warm-up time by 65%. This study provides a new thermal management paradigm with both technical feasibility and economical rationality for the large-scale promotion of electric buses in cold regions, and is of great significance for promoting the comprehensive electrification of public transport in high latitude regions.

Key words: thermal energy storage, electric bus, vehicle thermal management, metallic phase change material