汽车工程 ›› 2021, Vol. 43 ›› Issue (5): 713-720.doi: 10.19562/j.chinasae.qcgc.2021.05.010

• • 上一篇    下一篇

平头货车在考虑侧风影响下的气动阻力系数优化

张英朝,刘涛,曹惠南,张喆(),王国华   

  1. 吉林大学,汽车仿真与控制国家重点实验室,长春 130022
  • 收稿日期:2020-07-17 修回日期:2020-09-19 出版日期:2021-05-25 发布日期:2021-05-18
  • 通讯作者: 张喆 E-mail:zhangzhejlu@jlu.edu.cn
  • 基金资助:
    国家自然科学基金(11702109)

Optimization of Aerodynamic Drag Coefficient for a Cabover Truck Considering the Effects of Crosswind

Yingchao Zhang,Tao Liu,Huinan Cao,Zhe Zhang(),Guohua Wang   

  1. Jilin University,State Key Laboratory of Automotive Simulation and Control,Changchun 130022
  • Received:2020-07-17 Revised:2020-09-19 Online:2021-05-25 Published:2021-05-18
  • Contact: Zhe Zhang E-mail:zhangzhejlu@jlu.edu.cn

摘要:

本文中在考虑侧风影响的条件下,对一平头货车的气动阻力系数进行优化。首先,建立平头货车模型并进行简化处理,根据不同偏角侧风分布概率,提出以加权阻力系数为减阻优化的评价指标。之后把简化模型作为参数优化模型,选取驾驶室部分7个造型参数和货箱部分3个造型参数为设计变量,同时提出分别以加权阻力系数和0°侧风偏角下阻力系数为响应的两种方式,采用拉丁超立方的试验设计方法对优化参数进行试验设计,其中驾驶室部分生成40个样本,货箱部分生成16个样本,仿真得到不同侧风偏角下的阻力系数和加权阻力系数。最后使用Isight平台的Kriging近似模型拟合并采用自适应模拟退火优化算法进行寻优,得到减阻优化方案。结果表明,驾驶室部分优化后加权阻力系数下降168个点,降幅为21.90%;货箱部分优化后加权阻力系数下降94个点,降幅为12.25%,减阻效果明显。

关键词: 平头货车, 气动减阻优化, 侧风, 加权阻力系数

Abstract:

In this paper, the aerodynamic drag coefficient of a cabover truck is optimized with consideration of the effects of crosswind. Firstly, a model for the cabover truck is built and simplified, with the weighted drag coefficient, which is obtained based on the distribution probability of crosswind at different deflection angles, as the evaluation indicator of drag reduction optimization. Then with the simplified model as the model for parameter optimization, seven styling parameters of cab and three styling parameters of cargo container are selected as design variables, combined with Latin hypercube sampling, two variants of the design of experiments are proposed: taking the weighted drag coefficient and the drag coefficient without crosswind as the response, respectively, in which 40 samples of cab and 16 samples of cargo container are generated, and a simulation is conducted to obtain the drag coefficients at different deflection angles and hence the weighted drag coefficient. Finally, an optimization is performed by utilizing the Kriging approximation model of Isight platform and using the adaptive simulated annealing optimization algorithm and an optimized scheme for drag reduction is obtained. The results show that the weighted drag coefficient of the optimized cab reduces by 168 counts, equivalent to a falling rate of 21.90%; the weighted drag coefficient of the cargo container reduces by 94 counts, equivalent to a dropping rate of 12.25%, achieving an apparent drag reduction effect.

Key words: cabover truck, aerodynamic drag reduction optimization, crosswind, weighted drag coefficient