汽车工程 ›› 2022, Vol. 44 ›› Issue (1): 123-130.doi: 10.19562/j.chinasae.qcgc.2022.01.015

所属专题: 底盘&动力学&整车性能专题2022年

• • 上一篇    下一篇

基于滑模理论的高速车辆侧风稳定性控制研究

梁宝钰1,2,汪怡平1,2(),刘珣1,2,张倩文1,2,熊建波1,2,胡兴军3,王靖宇3   

  1. 1.武汉理工大学汽车工程学院,武汉 430070
    2.武汉理工大学,现代汽车零部件技术湖北省重点实验室,武汉 430070
    3.吉林大学汽车工程学院,长春 130025
  • 收稿日期:2021-10-09 修回日期:2021-11-02 出版日期:2022-01-25 发布日期:2022-01-21
  • 通讯作者: 汪怡平 E-mail:wangyiping@whut.edu.cn
  • 基金资助:
    国家自然科学基金(51775395);吉林大学汽车仿真与控制国家重点实验室开放基金(20201204)

Study on Crosswind Stability Control of High-speed Vehicle Based on Sliding Mode Theory

Baoyu Liang1,2,Yiping Wang1,2(),Xun Liu1,2,Qianwen Zhang1,2,Jianbo Xiong1,2,Xingjun Hu3,Jingyu Wang3   

  1. 1.School of Automotive Engineering,Wuhan University of Technology,Wuhan 430070
    2.Wuhan University of Technology,Hubei Key Laboratory of Advanced Technology for Automobile Components Technology,Wuhan 430070
    3.College of Automotive Engineering,Jilin University,Changchun 130025
  • Received:2021-10-09 Revised:2021-11-02 Online:2022-01-25 Published:2022-01-21
  • Contact: Yiping Wang E-mail:wangyiping@whut.edu.cn

摘要:

针对高速车辆侧风稳定性问题,搭建了汽车多体动力学(multi-body dynamics,MBD)和计算流体力学(computational fluid dynamics,CFD)双向耦合平台,并基于该平台设计了一种侧风稳定性控制系统。该系统的上层控制器基于滑模理论计算出侧风干扰下的高速车辆为维持稳定所需的附加横摆力矩,下层控制器将上层控制器输出的横摆力矩分配到各个车轮,从而完成车辆的抗侧风干扰控制。分析了未受控制车辆与直接横摆力矩控制(direct yaw-moment control,DYC)车辆在阶跃侧风下的运动特性和气动特性。研究结果表明,在阶跃侧风中,未受控制车辆的最大横摆角为5.7°,最大侧向位移为4.0 m,而施加DYC后,车辆横摆角基本为0,最大侧向位移为0.41 m,较好地维持了直线行驶状态。表明在此侧风稳定性控制系统下,高速车辆的抗侧风干扰能力得到有效提升。

关键词: 侧风稳定性, 动态双向耦合, 滑模理论, 直接横摆力矩

Abstract:

For crosswind stability of high-speed vehicles, a two-way coupling platform of multi-body dynamics (MBD) and computational fluid dynamics (CFD) is built, and a crosswind stability control system is designed based on the platform. Based on the sliding mode theory, the upper controller calculates the additional yaw moment required for the stability of high-speed vehicle under crosswind disturbance, and the lower controller distributes the yaw moment to each wheel, so as to complete the anti-crosswind control of the vehicle. The kinematic and aerodynamic characteristics of uncontrolled vehicle and direct yaw-moment control (DYC) vehicle under step crosswind are analyzed. The results show that the maximum yaw angle of the uncontrolled vehicle is 5.7° and the maximum lateral displacement is 4.0m in the step crosswind. After DYC is applied, the yaw angle of the vehicle is basically 0 and the maximum lateral displacement is 0.41m, with the vehicle maintaining the straight driving state well. It shows that the crosswind interference resistance of high-speed vehicles is improved effectively under the crosswind stability control system.

Key words: crosswind stability, dynamic two-way coupling, sliding mode theory, direct yaw-moment