汽车工程 ›› 2025, Vol. 47 ›› Issue (7): 1404-1414.doi: 10.19562/j.chinasae.qcgc.2025.07.017

• • 上一篇    

面向分布式电驱底盘与角模块的并联变结构悬架设计

高镇海,张汉英,韩宗志()   

  1. 吉林大学,汽车底盘集成与仿生全国重点实验室,长春 130022
  • 收稿日期:2024-11-07 修回日期:2024-12-19 出版日期:2025-07-25 发布日期:2025-07-18
  • 通讯作者: 韩宗志 E-mail:179627492@qq.com
  • 基金资助:
    国家自然科学基金(52394261)

Parallel Variable Geometry Suspension Design for Distributed Drive Electric Chassis with Corner Module Architecture

Zhenhai Gao,Hanying Zhang,Zongzhi Han()   

  1. Jilin University,National Key Laboratory of Automobile Chassis Integration and Bionics,Changchun 130022
  • Received:2024-11-07 Revised:2024-12-19 Online:2025-07-25 Published:2025-07-18
  • Contact: Zongzhi Han E-mail:179627492@qq.com

摘要:

分布式驱动电动汽车可控自由度高、底盘结构紧凑,是实现先进底盘线控技术的最佳平台。针对分布式电驱底盘扩展运动功能和模块化设计等需求,提出了一种并联变结构悬架设计方法。通过底盘运动功能分析,将悬架系统设计问题转化为2R1T并联机构型综合问题;采用子群与子流形概念建立了悬架系统各维度支链运动功能与拓扑结构之间的映射关系;统筹考虑机构的约束特性、位姿能力、机构的模块化与可重构性,以及输入输出运动解耦完成了悬架的拓扑结构优选。最后,从机构运动学和车辆动力学两方面开展了性能对比分析。研究结果表明:基于并联机构的悬架系统在位姿空间内运动平滑无突变,不存在奇异位形,具有良好的传递效能和灵巧度;悬架运动学性能和平顺性相比基于传统悬架的角模块构型获得了显著改善。

关键词: 分布式电驱底盘, 角模块, 变结构悬架, 并联机构

Abstract:

Distributed drive electric vehicles, characterized by multiple controllable DOFs and compact chassis structure, is an optimal platform for implementing advanced drive-by-wire chassis. For demand for extended motion functions and modular design of distributed drive electric chassis, a variable geometry suspension design method is proposed. By analyzing the chassis motion functions, the suspension design issue is transformed into a 2R1T parallel mechanism type synthesis problem. The concepts of subgroups and submanifolds are employed to establish a mapping relationship between the motion functions of the suspension linkages and their topological structures. Considering the constraint characteristics, pose capabilities, modularity, reconfigurability, and input-output motion decoupling of the mechanism, the topological structure optimization of the suspension is accomplished. Finally, a comparative performance analysis is carried out in terms of mechanism kinematics and vehicle dynamics. The results show that the suspension system based on parallel mechanism provides smooth and uninterrupted motion, without singular configurations within the posture workspace, demonstrating superior transmission efficiency and dexterity. The kinematic performance and ride comfort of the suspension system are significantly improved compared to those based on conventional configurations.

Key words: distributed drive electric chassis, wheel corner module, variable geometry suspension, parallel mechanism