| [1] |
马浩然, 李佳辉, 毕崟. 新能源汽车热管理研究综述[J]. 汽车实用技术, 2023, 48 (8): 1-9.
|
|
MA H R, LI J H, BI Y. Research review on thermal management of new energy vehicles[J]. Automobile Applied Technology, 2023, 48 (8): 1-9.
|
| [2] |
朱培培, 臧金环. 新能源汽车热管理技术发展趋势分析[J]. 汽车文摘, 2021(5): 32-38.
|
|
ZHU P P, ZANG J H. The development trends of thermal management technologies for new energy vehicles[J]. Automotive Digest, 2021(5): 32-38.
|
| [3] |
STARR C. The copper oxide rectifier[J]. Physics, 1936, 7: 15-19.
|
| [4] |
ROBERTS N A, WALKER D G. A review of thermal rectification observations and models in solid materials[J]. International Journal of Thermal Sciences, 2011, 50(5): 648-662.
|
| [5] |
WEHMEYER G, YABUKI T, MONACHON C, et al. Thermal diodes, regulators, and switches: physical mechanisms and potential applications[J]. Applied Physics Reviews, 2017, 4 (4): 041304.
|
| [6] |
ZHANG J, KAMIMURA Y, TOKUMOTO Y, et al. Direct experimental evidence of phonon-phason coupling in an Al-Pd-Mn icosahedral quasicrystal[J]. Philosophical Magazine, 2022, 102(15): 1461-1480.
|
| [7] |
ZHANG J, ZHOU J, TOKUMOTO Y, et al. Phonon-phason coupling strength in a Tsai-type Ag-In-Yb icosahedral quasicrystal[J]. Materials Transactions, 2023, 64(5): 945-949.
|
| [8] |
ZHANG J, KURONO T, KAMIMURA Y, et al. Unraveling the effects of phason strain on the thermoelectric properties in Ag-In-Yb icosahedral quasicrystals[J]. Journal of Alloys and Compounds, 2024, 976: 173335.
|
| [9] |
TAKEUCHI T. Very large thermal rectification in bulk composites consisting partly of icosahedral quasicrystals[J]. Science and Technology of Advanced Materials, 2014, 15(6): 064801.
|
| [10] |
NAKAYAMA R S, TAKEUCHI T. Thermal rectification in bulk material through unusual behavior of electron thermal conductivity of Al-Cu-Fe icosahedral quasicrystal[J]. Journal of Electronic Materials, 2015, 44(1): 356-361.
|
| [11] |
TAMURA R, MURAO Y, KISHINO S, et al. Electrical properties of the binary icosahedral quasicrystal and its approximant in the Cd-Yb system[J]. Materials Science and Engineering: A, 2004, 375: 1002-1005.
|
| [12] |
TAKEUCHI T. Thermal conductivity of the Al-based quasicrystals and approximants[J]. Zeitschrift für Kristallographie-Crystalline Materials, 2009, 224 (1-2): 35-38.
|
| [13] |
CHERNIKOV M A, BIANCHI A, OTT H R. Low-temperature thermal conductivity of icosahedral Al70Mn9Pd21[J]. Physical Review B, 1995, 51(1): 153-158.
|
| [14] |
EDAGAWA K, CHERNIKOV M A, BIANCHI A D, et al. Low temperature thermodynamic and thermal-transport properties of decagonal Al65Cu20Co15[J]. Physical Review Letters, 1996, 77: 1071-1074.
|
| [15] |
HIRATA K, MATSUNAGA T, SINGH S, et al. High-performance solid-state thermal diode consisting of Ag2(S,Se,Te)[J]. Journal of Electronic Materials, 2020, 49: 2895-2901.
|
| [16] |
KATSURA Y, KUMAGAI M, KODANI T, et al. Data-driven analysis of electron relaxation times in PbTe-type thermoelectric materials[J]. Science and Technology of Advanced Materials, 2019, 20: 511-520.
|
| [17] |
TAKEUCHI T, GOTO H, NAKAYAMA R, et al. Improvement in rectification ratio of an Al-based bulk thermal rectifier working at high temperatures[J]. Journal of Applied Physics, 2012, 111: 093517.
|
| [18] |
WONG M Y, TSO C Y, HO T C, et al. A review of state of the art thermal diodes and their potential applications[J]. International Journal of Heat and Mass Transfer, 2021, 164(9): 120607.
|
| [19] |
NGUYEN T H, NGUYEN V Q, PHAM A T, et al. Carrier control in CuAgSe by growth process or doping[J]. Journal of Alloys and Compounds, 2021, 852: 157094.
|