汽车工程 ›› 2018, Vol. 40 ›› Issue (11): 1308-1316.doi: 10.19562/j.chinasae.qcgc.2018.011.009

• • 上一篇    下一篇

分布式驱动电动汽车的近似最优转矩矢量控制*

谢伟东1, 徐威1, 付志军1, 李彬2   

  1. 1.浙江工业大学机械工程学院,杭州 310014;
    2.康考迪亚大学机械与工业工程系,加拿大 蒙特利尔 H3G1M8
  • 收稿日期:2017-09-29 出版日期:2018-11-25 发布日期:2018-11-25
  • 通讯作者: 徐威,硕士,E-mail:xwei808@163.com
  • 基金资助:
    国家自然科学基金(51405436,51375452)资助

Approximate Optimal Torque Vectoring Control for Distributed Drive Electric Vehicles

Xie Weidong1, Xu Wei1, Fu Zhijun1, Li Bin2   

  1. 1.College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014;
    2.Department of Mechanical and Industrial Engineering, Concordia University, Montreal H3G1M8, Canada
  • Received:2017-09-29 Online:2018-11-25 Published:2018-11-25

摘要: 针对分布式驱动车辆系统非线性的特性,提出一种基于最优转矩矢量控制的车辆侧向稳定性控制系统。首先使用魔术公式轮胎模型实时估计轮胎力,搭建轮胎侧偏刚度变化的非线性车辆模型。接着借鉴近似线性二次型规划的最优控制思想,设计基于质心侧向加速度的增益可调的横摆转矩控制方法,并根据驱动电机峰值转矩和轮胎摩擦圆的约束条件进行转矩矢量分配。最后进行CarSim和LabVIEW联合仿真和硬件在环实验。结果表明,控制系统能对车辆进行有效的实时控制,在显著改善车辆稳定性的同时不严重影响车辆的纵向性能。

关键词: 侧向稳定性, 轮胎魔术公式, 最优控制, 转矩矢量控制, 硬件在环实验

Abstract: In view of the nonlinearity of distributed drive electric vehicle system, a vehicle lateral stability control system based on optimal torque vectoring control is proposed. Firstly magic formula tire model is used to estimate tire forces in real time, and a nonlinear vehicle model with varying tire lateral stiffness is built. Then by using as a reference the optimal control concept of approximate linear quadratic regulator (LQR), a yaw torque control method with adjustable gain is designed based on the lateral acceleration of mass center, and the torque vectoring allocation is performed according to the constraints of motor peak torque and tire friction cycle. Finally both CarSim / LabVIEW co-simulation and hardware-in-the-loop experiment are carried out. The results show that the control system proposed can effectively fulfill the real-time control on vehicle and significantly improve its stability without greatly deteriorating its longitudinal performance

Key words: lateral stability, tire magic formula, optimal control, torque vectoring control, HIL experiment