汽车工程 ›› 2019, Vol. 41 ›› Issue (5): 537-544.doi: 10.19562/j.chinasae.qcgc.2019.05.009

• • 上一篇    下一篇

汽车底部复杂流场的主动和被动控制减阻方法研究*

袁志群1,2,3, 杨明智2, 张炳荣1,3   

  1. 1.厦门理工学院机械与汽车工程学院,厦门 361024;
    2.中南大学,轨道交通安全教育部重点实验室,长沙 410075;
    3.福建省客车及特种车辆研发协同创新中心,厦门 361024
  • 收稿日期:2018-09-25 发布日期:2019-06-05
  • 通讯作者: 袁志群,博士研究生,E-mail:yzqhnu@163.com
  • 基金资助:
    国家自然科学基金(51775395,50975083,11504308);福建省中青年老师教育科研项目(JAT170414);福建省科技创新平台项目(2016H2003);福建省普通公路科研项目(201010);厦门理工学院“科研攀登计划”项目(XPDKQ18005)资助

A Study on Car Drag Reduction by Active and PassiveControl of Complex Underbody Flow Field

Yuan Zhiqun1,2,3, Yang Mingzhi2, Zhang Bingrong1,3   

  1. 1.School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen 361024;
    2.Central South University, Key Laboratory of Traffic Safety on Track, Ministry of Education, Changsha 410075;
    3.Fujian Collaborative Innovation Center for R&D of Coach and Special Vehicle, Xiamen 361024
  • Received:2018-09-25 Published:2019-06-05

摘要: 针对汽车底部复杂流场结构存在的问题及其对汽车燃油经济性的影响,以降低气动阻力为目标,采用计算流体动力学方法研究了侧风工况下汽车底部复杂流场的主动和被动控制减阻方法,设计了阻流板、侧裙、底部抽吸控制槽和尾部气流喷射控制槽4种减阻方案,分析了各方案对气动阻力的影响和减阻机理。研究结果表明,减阻效果与横摆角、阻流板高度、侧裙高度、底部控制槽抽吸速度和尾部控制槽气流喷射的速度与角度有关,4种减阻方案的气动阻力最大降幅分别为9.4%,10.4%,13.5%和4.7%。在实际使用过程中,宜根据汽车运行环境采用动态控制方法,以达到最优减阻效果。汽车模型风洞实验验证了本文中数值计算方法的准确性,研究结果可为汽车设计提供参考。

关键词: 气动阻力, 阻流板, 侧裙, 底部抽吸控制槽, 尾部气流喷射控制槽, 动态控制方法

Abstract: In view of the problem existing in the complex flow field structure of car underbody and its effects on fuel economy, with a goal of reducing aerodynamic drag, CFD technique is used to study the active and passive drag reduction methods for the complex flow field of car underbody in sidewind condition,and four drag reduction schemes including spoiler, side-skirts, underbody suction control slot and wake jet flow control slot are designed to analyze the effects of schemes on aerodynamic drag and the mechanism of drag reduction. The results show that the effects of drag reduction is related to yaw angle, spoiler height, the height of side-skirts, the suction speed of underbody control slot and the injection speed and injection angle of wake jet, and the maximum drag reduction of four schemes are 9.4%, 10.4%, 13.5% and 4.7% respectively. During practical use, dynamic control method should be adopted according to vehicle running environment to achieve optimal drag reduction effect. The numerical calculation method is validated by the wind tunnel test on car model. The results of the study provide references for vehicle design.

Key words: aerodynamic drag, spoiler, side-skirts, underbody suction control slot, wake jet control slot, dynamic control method