汽车工程 ›› 2019, Vol. 41 ›› Issue (7): 807-814.doi: 10.19562/j.chinasae.qcgc.2019.07.012

• • 上一篇    下一篇

基于NARX神经网络的路面不平度识别

李杰, 郭文翠, 谷盛丰, 赵旗   

  1. 吉林大学,汽车仿真与控制国家重点实验室,长春 130025
  • 出版日期:2019-07-25 发布日期:2019-07-30
  • 通讯作者: 李杰,教授,博士,E-mail:lj@jlu.edu.cn。
  • 基金资助:
    中国汽车产业创新发展联合基金重点项目(U1564213)、国家自然科学基金国际(地区)合作与交流重点项目(61520106008)和省校共建项目(SXGJSF2017-2-1-1)资助。

Road Roughness Identification Based on NARX Neural Network

Li Jie, Guo Wencui, Gu Shengfeng, Zhao Qi   

  1. Jilin University, State Key Laboratory of Automotive Simulation and Control, Changchun 130025
  • Online:2019-07-25 Published:2019-07-30

摘要: 为应用NARX神经网络识别路面不平度,对NARX神经网络及其训练过程和结构设计进行了分析,采用相关系数和均方根误差作为NARX神经网络识别效果的评价指标。建立了路面不平度滤波白噪声模型和汽车平顺性4自由度平面模型,通过仿真获得路面不平度和车辆响应。以可测试的车辆响应作为NARX神经网络的输入,采用正交试验设计提出确定NARX神经网络输入方案的方法,对在常用等级路面上以常用车速行驶的某汽车的前轮路面不平度进行了识别。结果表明,将可测试的车辆响应作为NARX神经网络输入,结合正交试验设计,解决了NARX神经网络最优输入方案的确定问题。

关键词: 路面不平度识别, NARX神经网络, 正交试验设计, 平顺性

Abstract: For applying NARX neural network to identify road roughness, NARX neural network and its training process and structure design are analyzed. Correlation coefficient and root mean square error are used as evaluation indicator of identification effect of NARX neural network. The white noise model of road roughness and four DOF planar model for vehicle ride comfort are established, on which a simulation is conducted to get the road roughness and vehicle responses. With measurable vehicle responses as the input of NARX neural network, a method for determining the input scheme of NARX neural network is proposed by using orthogonal experimental design, and the road roughness for the front wheel of a car running on a common-grade road with common speed is identified. The results show that with measurable vehicle responses as the input of NARX neural network,combined with orthogonal experimental design can solve the problem of determining the optimal input scheme of NARX neural network

Key words: road roughness identification, NARX neural network, orthogonal design of experiment, ride comfort