[1] GIL-NEGRETE N, VINOLAS J, KARI L. A simplified methodology to predict the dynamic stiffness of carbon-black filled rubber isolators using a finite element code[J]. Journal of Sound and Vibration,2006,296(4-5):757-776. [2] 赵振东.汽车悬架与橡胶弹性元件理论及设计[M].北京:国防工业出版社,2015. [3] 于增量,张立军,罗鹰.一种新的橡胶衬套半经验动力学模型[J].汽车技术,2010(8):6-11. [4] BAGLEY R L, TORVIK P J. A theoretical basis for the application of fractional calculus to viscoelasticity[J]. Journal of Rheology,1983,27(3):201-210. [5] HEYMANS N. Fractional calculus description of non-linear viscoelastic behaviour of polymers[J]. Nonlinear Dynamics,2004,38(1-4):221-231. [6] YAJIMA T, NAGAHAMA H. Differential geometry of viscoelastic models with fractional-order derivatives[J]. Journal of Physics A Mathematical & Theoretical,2010,43(38):474-479. [7] 赵永玲,侯之超,黄友剑,等.橡胶材料的一种5参数分数导数模型[J].振动与冲击,2015,34(23):37-41. [8] LIU J G, XU M Y. Higher-order fractional constitutive equations of viscoelastic materials involving three different parameters and their relaxation and creep functions[J]. Mechanics of Time-Dependent Materials,2006,10(4):263-279. [9] 赵永玲,侯之超.基于分数导数的橡胶材料两种黏弹性本构模型[J].清华大学学报:自然科学版,2013,53(3):378-383. [10] BERG M. A no-linear rubber spring model vehicle dynamics analysis[J]. Vehicle System Dynamics,1998,30(3-4):197-212. [11] GEMANT A. A method of analyzing experimental results obtained from elasto-viscous bodies[J]. Physics,1936,7(8):311-317. [12] 蒋莹莹,纪志成.基于混合量子粒子群算法的DFIG参数辨识[J].系统仿真学报,2016,28(5):1054-1062. [13] 吕微微,张宏立.基于协同进化粒子群算法的系统辨识[J].计算机仿真,2016,33(1):336-339. [14] 刘衍民.新型粒子群算法理论与实践[M].北京:科学出版社,2013. [15] 胡小玲.炭黑填充橡胶黏超弹力学行为的宏细观研究[D].湘潭:湘潭大学,2013. [16] 左曙光,李凯,吴旭东,等.一种新型橡胶理论模型及其参数识别[J].振动、测试与诊断,2014,34(3):433-438. |