Automotive Engineering ›› 2021, Vol. 43 ›› Issue (2): 278-286.doi: 10.19562/j.chinasae.qcgc.2021.02.017
Previous Articles Next Articles
Renkai Ding1,Yu Jiang2,Ruochen Wang2(),Wei Liu2,Xiangpeng Meng1,Zeyu Sun2
Received:
2020-07-13
Revised:
2020-09-24
Online:
2021-02-25
Published:
2021-03-04
Contact:
Ruochen Wang
E-mail:wrc@ujs.edu.cn
Renkai Ding,Yu Jiang,Ruochen Wang,Wei Liu,Xiangpeng Meng,Zeyu Sun. Research on Road Elevation and Grade Identification of Active Suspension Considering Unknown Inputs[J].Automotive Engineering, 2021, 43(2): 278-286.
1 | IMINE H, DELANNE Y, M'SIRDI N K. Road profile inputs for evaluation of the loads on the wheels[J]. Vehicle System Dynamics, 2005, 43(s1): 359-369. |
2 | IMINE H, DELANNE Y, M'SIRDI N K. Road profile input estimation in vehicle dynamics simulation[J]. Vehicle System Dynamics, 2006, 44(4): 285-303. |
3 | ASTM. Standard test method for measuring pavement roughness using a profilograph[C]. West Conshohocken, PA: American Society for Testing and Materials, 2008. |
4 | 赵济海, 王哲人, 关朝雳. 路面不平度的测量分析与应用[M]. 北京:北京理工大学出版社, 2000. |
ZHAO J H, WANG Z R, GUAN C L. Measurement analysis and application of road roughness[M]. Beijing:Beijing Institute of Technology Press, 2000. | |
5 | 过学迅, 徐占, 李孟良, 等. 路面不平度测量技术研究综述[J]. 中外公路, 2009 (5): 47-51. |
GUO X X, XU Z, LI M L, et al. Survey of road roughness measurement technology[J]. Journal of China & Foreign Highway, 2009 (5): 47-51. | |
6 | KIM H J, YANG H S, PARK Y P. Improving the vehicle performance with active suspension using road⁃sensing algorithm[J]. Computers & Structures, 2002, 80(18-19): 1569-1577. |
7 | LI Y, YONG B, WU H, et al. Road detection from airborne LiDAR point clouds adaptive for variability of intensity data[J]. Optik, 2015, 126(23): 4292-4298. |
8 | STAVENS D, THRUN S. A self⁃supervised terrain roughness estimator for off⁃road autonomous driving[J]. arXiv preprint arXiv:1206.6872, 2012. |
9 | FAURIAT W, MATTRAND C, GAYTON N, et al. Estimation of road profile variability from measured vehicle responses[J]. Vehicle System Dynamics, 2016, 54(5): 585-605. |
10 | HU F. Road profile recovery using vertical acceleration data[D]. Windsor: University of Windsor, 2015. |
11 | LI Z, YU W, CUI X. Online classification of road roughness conditions with vehicle unsprung mass acceleration by sliding time window[J]. Shock and Vibration, 2018, 2018(PT.9):1-13. |
12 | LIU W, WANG R, DING R, et al. On⁃line estimation of road profile in semi⁃active suspension based on unsprung mass acceleration[J]. Mechanical Systems and Signal Processing, 2020, 135: 106370. |
13 | UYS P E, ELS P S, THORESSON M J, et al. Suspension settings for optimal ride comfort of off⁃road vehicles travelling on roads with different roughness and speeds[J]. Journal of Terramechanics, 2007, 44(2): 163-175. |
14 | TUDON⁃MARTINEZ J C, FERGANI S, SENAME O, et al. Online road profile estimation in automotive vehicles[C]. 2014 European Control Conference (ECC),Starsbourg: IEEE, 2014: 2370-2375. |
15 | 么鸣涛, 管继富, 顾亮. 基于车辆振动加速度响应的路面识别研究[J]. 拖拉机与农用运输车, 2011, 38(1): 28-31. |
ME M T, GUAN J F, GU L. Research on road surface identification based on vehicle vibration acceleration response[J]. Tractor & Farm Transporter, 2011, 38(1): 28-31. | |
16 | 郭孔辉, 余五辉, 章新杰, 等. 自适应半主动悬架系统控制策略[J]. 湖南大学学报(自然科学版), 2013, 40(2): 39-44. |
GUO K H, YU W H, ZHANG X J, et al. Control strategy of adaptive semi⁃active suspension system[J]. Journal of Hunan University (Natural Science Edition), 2013, 40(2): 39-44. | |
17 | KOCH G. Adaptive control of mechatronic vehicle suspension systems[D]. Munich:Technische Universität München, 2011. |
18 | KANG S W, KIM J S, KIM G W. Road roughness estimation based on discrete Kalman filter with unknown input[J]. Vehicle System Dynamics, 2019, 57(10): 1530-1544. |
19 | DING R, WANG R, MENG X, et al. A modified energy⁃saving skyhook for active suspension based on a hybrid electromagnetic actuator[J]. Journal of Vibration and Control, 2019, 25(2): 286-297. |
20 | 王凯. 基于自适应遗传算法的整车主动悬架自抗扰控制研究[D]. 长春:吉林大学, 2017. |
WANG K. Active disturbance rejection control of vehicle active Suspension based on adaptive genetic algorithm[D]. Changchun: Jilin University, 2017. | |
21 | 秦也辰, 董明明, 赵丰,等. 基于路面识别的车辆半主动悬架控制[J]. 东北大学学报(自然科学版), 2016(37): 1143. |
QIN Y C, DONG M M, ZHAO F, et al. Control of semi⁃active suspension based on road surface identification[J]. Journal of Northeastern University (Natural Science), 2016,37(8):1138-1143. |
[1] | Zixian Li,Shiju Pan,Yuan Zhu,Binbing He,Youchun Xu. Semi-active Suspension Control for Intelligent Vehicles Based on State Feedback and Preview Feedforward [J]. Automotive Engineering, 2023, 45(5): 735-745. |
[2] | Gang Wang,Kunpeng Li,Hui Jing,Suqi Liu. Parameter-Free H∞ Control of Vehicle Active Suspension Based on Q-learning [J]. Automotive Engineering, 2023, 45(12): 2260-2271. |
[3] | Lang Liu,Zhifei Zhang,Hongwei Lu,Zhongming Xu. Road Roughness Identification Based on Augmented Kalman Filtering with Consideration of Vehicle Acceleration [J]. Automotive Engineering, 2022, 44(2): 247-255. |
[4] | Xiaokai Chen,Mingkai Zeng,Xiang Liu,An Jiang. Research on Semi-active Suspension Preview Control Based on VSL-MPC [J]. Automotive Engineering, 2022, 44(10): 1537-1546. |
[5] | Zhizhao Peng,Yintao Wei,Xiaowei Fu,Xiejun Yao. Research and Performance Test of Magnetorheological Semi⁃Active Suspension System Based on a Real Vehicle [J]. Automotive Engineering, 2021, 43(2): 269-277. |
[6] | Ji Renjie, Fang Mingxia, Li Peilin, Yan Gai. Theoretical and Experimental Research on H∞ Control Suspension System with Time Delay [J]. Automotive Engineering, 2020, 42(3): 339-344. |
[7] | Guo Konghui, Wang Yang. A Study on Modified Acceleration-driven DampingControl Strategy for Semi-active Suspension [J]. Automotive Engineering, 2019, 41(5): 481-486. |
[8] |
Wang Xingye, Zhang Jinqiu, Liu Yile, Zhang Jian & Peng Zhizhao.
Influence of Inertia Mass in Actuator on Amplitude-frequency Characteristics of Active Suspension System [J]. , 2018, 40(9): 1083-1088. |
[9] | Peng Zhizhao, Zhang Jinqiu, Zhang Jian, Fu Xiaowei. Experimental Study on a SemiActive Magnetorheological Suspension [J]. , 2018, 40(5): 561-567. |