1 |
HTTPS://iea.blob.core.windows.net/assets/3f901e93-c083-4649-a9e6-c591e28a7b70/ETP2015.pdf.
|
2 |
IKEYA K, TAKAZAWA M, YAMADA T, et al. Thermal efficiency enhancement of a gasoline engine [J]. SAE International Journal of Engines, 2015, 8(4):1579-1586.
|
3 |
ITABASHI S, MURASE E, TANAKA H, et al. New combustion and powertrain control technologies for fun-to-drive dynamic performance and better fuel economy [C]. SAE Paper 2017-01-0589.
|
4 |
JUN D, LEE B, SON J, et al. Development of gasoline direct injection engine for improving brake thermal efficiency over 44% [J]. Journal of Engineering for Gas Turbines and Power, 2020, 142(10):101005.
|
5 |
TOULSON E, SCHOCK H, ATTARD W. A review of pre-chamber initiated jet ignition combustion systems [C]. SAE Paper 2010-01-2263.
|
6 |
王博远,齐运亮,王颖迪,等.预燃室射流点火装置的设计与性能研究[J].汽车工程,2018,40(1):7-13.
|
|
WANG B, QI Y, WANG Y, et al. An investigation into the design and performance of pre-combustion chamber jet igniter [J]. Automotive Engineering, 2018, 40(1): 567-573.
|
7 |
GENTZ G, THELEN B, GHOLAMISHEERI M, et al. A study of the influence of orifice diameter on a turbulent jet ignition system through combustion visualization and performance characterization in a rapid compression machine [J]. Applied Thermal Engineering, 2015, 81: 399-411.
|
8 |
TIAN J, CUI Z, REN Z, et al. Experimental study on jet ignition and combustion processes of natural gas [J]. Fuel, 2020, 262: 116467.
|
9 |
LI F, ZHAO Z, WANG Z, et al. Experimental and numerical study of a methane-fueled pre-chamber system in rapid compression machine [J]. Combustion Science and Technology, 2019: 1-32.
|
10 |
BISWAS S, TANVIR S, WANG H, et al. On ignition mechanisms of premixed CH4/air and H2/air using a hot turbulent jet generated by pre-chamber combustion [J]. Applied Thermal Engineering, 2016, 106: 925–937.
|
11 |
PETERS N, KRISHNA S, BUNCE M, et al. Optimization of lambda across the engine map for the purpose of maximizing thermal efficiency of a jet ignition engine[C]. SAE Paper 2020-01-0278.
|
12 |
COOPER A, HARRINGTON A, BASSETT M, et al. Application of the passive mahle jet ignition system and synergies with miller cycle and exhaust gas recirculation[C]. SAE Paper 2020-01-0283.
|
13 |
SHAH A, TUNESTAL P, JOHANSSON B. Scalability aspects of pre-chamber ignition in heavy duty natural gas engines [C]. SAE Paper 2016-01-0796.
|
14 |
NORITAKA K, HIROKI K, NAOHIRO I. Study of gasoline pre-chamber combustion at lean operation [C]. Ignition Systems for Gasoline Engines, 2018: 261-274.
|
15 |
HUA J, ZHOU L, GAO Q, et al. Influence of pre-chamber structure and injection parameters on engine performance and combustion characteristics in a turbulent jet ignition (TJI) engine [J]. Fuel, 2021, 283.
|
16 |
冷先银,葛琪琪,何志霞,等.预燃室式天然气掺氢发动机燃烧及排放模拟[J].内燃机学报,2021,39(1):26-33.
|
|
LENG X Y, GE Q Q, HE Z X, et al. Numerical study on the combustion and emission characteristics of a prechamber engine fueled with hydrogen enriched compressed natural gas [J]. Transactions of CSICE, 2021, 39(1): 26-33.
|
17 |
赵自庆,王志,李富柏,等.气相射流点火天然气发动机的燃烧及排放特性[J].汽车安全与节能学报, 2020, 11(1): 117-126.
|
|
ZHAO Z Q, WANG Z, LI F B, et al. Characteristics of combustion and emission of natural gas engine using gas-jet ignition [J]. Journal of Automotive Safety and Energy, 2020, 11(1): 117-126.
|
18 |
ZHAO Z, WANG Z, QI Y, et al. Experimental study of combustion strategy for jet ignition on a natural gas engine [J]. International Journal of Engine Research, 2020. https ://doi.org/10.1177/14680874 20977751.
|
19 |
LI F, ZHAO Z, WANG B, et al. Experimental study of pre-chamber jet ignition in a rapid compression machine and single-cylinder natural gas engine[J]. International Journal of Engine Research, 2021, 22(4): 1342–1356.
|
20 |
徐雅齐,王志,王建昕,等.增压直喷汽油机超级爆震的不同抑制方法[J].内燃机学报,2014,32(1):26-31.
|
|
XU Y Q, WANG Z, WANG J X, et al. Suppression strategies for super-knock of turbo-charged GDI engines [J]. Transactions of CSICE, 2014, 32(1): 26-31.
|