Automotive Engineering ›› 2023, Vol. 45 ›› Issue (7): 1145-1152.doi: 10.19562/j.chinasae.qcgc.2023.07.005
Special Issue: 智能网联汽车技术专题-规划&决策2023年
Previous Articles Next Articles
Zhenhai Gao,Mingxi Bao,Fei Gao(),Minghong Tang
Received:
2022-12-14
Revised:
2023-01-29
Online:
2023-07-25
Published:
2023-07-25
Contact:
Fei Gao
E-mail:gaofei123284123@jlu.edu.cn
Zhenhai Gao, Mingxi Bao, Fei Gao, Minghong Tang. The Method of Probabilistic Multi-modal Expected Trajectory Prediction Based on LSTM[J].Automotive Engineering, 2023, 45(7): 1145-1152.
1 | HUANG Z, MO X, LV C. Multi-modal motion prediction with transformer-based neural network for autonomous driving[C]. 2022 International Conference on Robotics and Automation (ICRA). IEEE, 2022: 2605-2611. |
2 | LUO C, SUN L, DABIRI D, et al. Probabilistic multi-modal trajectory prediction with lane attention for autonomous vehicles[C]. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2020: 2370-2376. |
3 | CASAS S, GULINO C, SUO S, et al. The importance of prior knowledge in precise multimodal prediction[C]. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2020: 2295-2302. |
4 | HUANG Y, DU J, YANG Z, et al. A survey on trajectory-prediction methods for autonomous driving[J]. IEEE Transactions on Intelligent Vehicles, 2022. |
5 | 张晓宁. 基于LSTM网络的车辆轨迹预测研究[J]. 汽车实用技术, 2020, 45(22):3. |
ZHANG X N. Research on vehicle trajectory prediction based on LSTM network [J]. Practical Technology of Automobile, 2020, 45(22):3. | |
6 | 张一恒. 基于驾驶风格辨识和运动预测的换道风险评估及决策方法[D].西安:西安理工大学,2020. |
ZHANG Y H. Lane change risk assessment and decision method based on driving style recognition and motion prediction [D]. Xi'an:Xi 'an University of Technology,2020. | |
7 | 李亚秋, 吴超仲, 马晓凤,等. 基于EKF学习方法的BP神经网络汽车换道意图识别模型研究[J]. 武汉理工大学学报:交通科学与工程版, 2013, 37(4):843-847. |
LI Y Q, WU C Z, MA X F,et al. Research on vehicle lane change intention recognition model based on BP neural network based on EKF learning method [J]. Journal of Wuhan University of Technology: Transportation Science and Engineering,2013,37(4):843-847. | |
8 | XIE D F, FANG Z Z, JIA B, et al. A data-driven lane-changing model based on deep learning[J]. Transportation Research Part C: Emerging Technologies, 2019, 106: 41-60. |
9 | LIN L, LI W, BI H, et al. Vehicle trajectory prediction using lstms with spatial–temporal attention mechanisms[J]. IEEE Intelligent Transportation Systems Magazine, 2021, 14(2): 197-208. |
10 | XIAO H, WANG C, LI Z, et al. UB-LSTM: a trajectory prediction method combined with vehicle behavior recognition[J]. Journal of Advanced Transportation, 2020: 1-12. |
11 | TANG C, SALAKHUTDINOV R R. Multiple futures prediction[J]. Advances in Neural Information Processing Systems, 2019, 32. |
12 | LEE N, CHOI W, VERNAZA P, et al. Desire: distant future prediction in dynamic scenes with interacting agents[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 336-345. |
13 | YUAN Y, KITANI K. Diverse trajectory forecasting with determinantal point processes[J]. arXiv preprint arXiv:, 2019. |
14 | GUPTA A, JOHNSON J, FEI-FEI L, et al. Social gan: socially acceptable trajectories with generative adversarial networks[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 2255-2264. |
15 | XIA C, WENG C Y, ZHANG Y, et al. Vision-based measurement and prediction of object trajectory for robotic manipulation in dynamic and uncertain scenarios[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(11): 8939-8952. |
16 | GUO H Y, MENG Q Y, CAO D P, et al. Vehicle trajectory prediction method coupled with ego vehicle motion trend under dual attention mechanism[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-16. |
17 | PHAN-MINH T, GRIGORE E C, BOULTON F A, et al. Covernet: multimodal behavior prediction using trajectory sets[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 14074-14083. |
18 | RHINEHART N, MCALLISTER R, KITANI K, et al. Precog: prediction conditioned on goals in visual multi-agent settings[C].Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 2821-2830. |
19 | BIKTAIROV Y, STEBELEV M, RUDENKO I, et al. Prank: motion prediction based on ranking[J]. Advances in Neural Information Processing Systems, 2020, 33: 2553-2563. |
20 | DEO N, TRIVEDI M M. Convolutional social pooling for vehicle trajectory prediction[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2018: 1468-1476. |
21 | DEO N, TRIVEDI M M. Multi-modal trajectory prediction of surrounding vehicles with maneuver based lstms[C]. 2018 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2018: 1179-1184. |
22 | DEO N, WOLFF E, BEIJBOM O. Multimodal trajectory prediction conditioned on lane-graph traversals[C]. Conference on Robot Learning. PMLR, 2022: 203-212. |
23 | CUI H, RADOSAVLJEVIC V, CHOU F C, et al. Multimodal trajectory predictions for autonomous driving using deep convolutional networks[C]. 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019: 2090-2096. |
24 | GERS F A, SCHMIDHUBER J, CUMMINS F. Learning to forget: continual prediction with LSTM[J]. Neural Computation, 2000, 12(10): 2451-2471. |
25 | KRAJEWSKI R, BOCK J, KLOEKER L, et al. The high dataset: a drone dataset of naturalistic vehicle trajectories on german highways for validation of highly automated driving systems[C]. 2018 21st International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2018: 2118-2125. |
[1] | Gaoshi Zhao,Long Chen,Yingfeng Cai,Yubo Lian,Hai Wang,Qingchao Liu,Chenglong Teng. Trajectory Prediction Technology Integrating Complex Network and Memory-Augmented Network [J]. Automotive Engineering, 2023, 45(9): 1608-1616. |
[2] | Weiguo Liu,Zhiyu Xiang,Rui Liu,Guodong Li,Zixu Wang. Research on End-to-End Vehicle Motion Planning Method Based on Deep Learning [J]. Automotive Engineering, 2023, 45(8): 1343-1352. |
[3] | Jing Lian,Shuoxian Li,Yidi Liu,Dongfang Yang,Linhui Li. Goal Supervised Attention Network for Vehicle Trajectory Prediction [J]. Automotive Engineering, 2023, 45(8): 1353-1361. |
[4] | Qihui Hu,Yingfeng Cai,Hai Wang,Long Chen,Zhaozhi Dong,Qingchao Liu. Heterogeneous Multi-object Trajectory Prediction Method Based on Hierarchical Graph Attention [J]. Automotive Engineering, 2023, 45(8): 1448-1456. |
[5] | Yong Han,Xujie Lin,Hongwu Huang,Hongyu Cai,Jinrong Luo,Yangting Li. An Approach for Predicting Pedestrian Trajectories in Typical Car Crash Scenarios [J]. Automotive Engineering, 2023, 45(6): 1022-1030. |
[6] | Xiang Gao,Long Chen,Xinye Wang,Xiaoxia Xiong,Yicheng Li,Yuexia Chen. Intelligent Vehicle Driving Risk Assessment Method Based on Trajectory Prediction [J]. Automotive Engineering, 2023, 45(4): 588-597. |
[7] | Zihao Wang,Yingfeng Cai,Hai Wang,Long Chen,Xiaoxia Xiong. Surrounding Multi-Target Trajectory Prediction Method Based on Monocular Visual Motion Estimation [J]. Automotive Engineering, 2022, 44(9): 1318-1326. |
[8] | Zheyu Zhang,Lü Chao,Jinghang Li,Guangming Xiong,Shaobin Wu,Jianwei Gong. Pedestrian Trajectory Prediction and Risk Grade Assessment Based on Vehicle-Perspective Pedestrian Data [J]. Automotive Engineering, 2022, 44(5): 675-683. |
[9] | Jinghua Guo,Zhifei He,Yugong Luo,Keqiang Li. Vehicle Cut-in Trajectory Prediction Based on Deep Learning in a Human-machine Mixed Driving Environment [J]. Automotive Engineering, 2022, 44(2): 153-160. |
[10] | Dongmei Shi,Feng Xiao. Study on Driving Behavior Detection Method Based on Improved Long and Short⁃term Memory Network [J]. Automotive Engineering, 2021, 43(8): 1203-1209. |
[11] | Guanqun Liang,Tong Zhao,Yan Wang,Yintao Wei. Road Unevenness Identification Based on LSTM Network [J]. Automotive Engineering, 2021, 43(4): 509-517. |
[12] | Xiaojian Wu,Dong Yan,Aichun Wang,Juhua Huang,Lei Wu,Bing Zhou. Research on Improved Artificial Potential Field Path Planning Integrating Prediction of Preceding Vehicle Trajectory [J]. Automotive Engineering, 2021, 43(12): 1752-1761. |
[13] | Li Da, Zhang Zhaosheng, Liu Peng, Wang Zhenpo, Dong Haotian. Vehicle Classification Method in Multi-climates Based on Modified LSTM-AdaBoost Algorithm [J]. Automotive Engineering, 2020, 42(9): 1248-1255. |
[14] | Zhang Yiming, Zhou Bing, Wu Xiaojian, Cui Qingjia, Chai Tian. Motion Planning of High Speed Intelligent Vehicle Based on Front Vehicle Trajectory Prediction [J]. Automotive Engineering, 2020, 42(5): 574-580. |
[15] | Xie Feng, Lou Jingtao, Zhao Kai & Qi Yao. A Research on Vehicle Trajectory Prediction Method Based onBehavior Recognition and Curvature Constraints [J]. Automotive Engineering, 2019, 41(9): 1036-1042. |
|