Automotive Engineering ›› 2023, Vol. 45 ›› Issue (10): 1862-1875.doi: 10.19562/j.chinasae.qcgc.2023.10.008
Special Issue: 新能源汽车技术-动力电池&燃料电池2023年
Previous Articles Next Articles
Jiqing Chen1,2,Changjing Zeng1,2,Yunjiao Zhou1,2,Fengchong Lan1,2(),Qingshan Liu1,2
Received:
2023-03-08
Revised:
2023-03-28
Online:
2023-10-25
Published:
2023-10-23
Contact:
Fengchong Lan
E-mail:lfc1301@hotmail.com
Jiqing Chen,Changjing Zeng,Yunjiao Zhou,Fengchong Lan,Qingshan Liu. Flow Field Structure Optimization and Performance Improvement with Pentagon Baffle for Proton Exchange Membrane Fuel Cell[J].Automotive Engineering, 2023, 45(10): 1862-1875.
"
项目 | 参数 | 数值 | 参考文献 | 参数 | 数值 | 参考文献 |
---|---|---|---|---|---|---|
操作条件 | 操作温度/K | 353.15 | 阳极/阴极入口相对湿度/% | 50 | ||
阳极/阴极操作压力/atm | 1 | 阳极/阴极化学计量比 | 1.5, 2.0 | |||
物理/电化学参数 | 液态水黏度/(Pa·s) | 1.002e-3 | 液态水和水蒸气之间的 相变速率/s-1 | 100 | ||
液态水、干燥PEM密度/(kg·m-3) | 988, 2 000 | PEM的等效质量/ (kg·mol-1) | 1.1 | |||
表面张力/(N·m-1) | 0.062 5 | 阳极/阴极电荷转移系数 | 0.5, 0.5 | |||
膜膨胀系数 | 1.26e-2 | CC, CL的电导率/(S·m-1) | 2e4, 5 000 | |||
O2, H2, N2摩尔质量/(kg·mol-1) | 3.2e-2, 2e-3, 2.8e-2 | GDL, MPL, CL的 接触角/(°) | 120, 110, 100 | |||
CC, GDL, MPL, CL, PEM比热/(J·kg-1·K-1) | 875, 710, 710, 710, 2 000 | CL, PEM的固有渗透率/m2 | 1.0e-13, 2.0e-20 | |||
H2, O2的浓度指数 | 0.5, 1 | 阳极参考交换电流密度/(A·m-2) | 100 | |||
阻塞的水饱和度指数 | 2.5 | MPL的热导率/ (W·m-1·K-1) | IP: 1, TP: 0.6 | |||
传输电流的孔隙阻塞 | 2.5 | MPL的电导率/(S·m-1) | IP: 1 978, TP: 885 | |||
接触电阻/(Ω·m-2) | 2e-6 | 离聚物弯曲度 | 0.7 | |||
CC, GDL, MPL, CL, PEM密度/(kg·m-3) | 1 880, 490, 1 250, 2 010, 1 980 | O2, H2密度/(kg·m-3) | 1.29, 0.089 9 | |||
离聚物体积分数 | 0.4 | MPL的固有渗透率/m2 | IP: 1.0e-12, TP:3.3e-13 | [ | ||
阴极CL结块半径 | 1.0e-7 | 阴极/阳极Pt消耗/(kg·m-2) | 0.003, 0.001 | |||
O2, H2, N2, H2O热导率/(W·m-1·K-1) | 0.029 6, 0.204 0, 0.029 3, 0.023 7 | 阴极/阳极C消耗/ (kg·m-2) | 0.006 | |||
H2O 在阳极、阴极GCs内的扩散率/(m2·s-1) | 5.457e-5, 2.236e-5 | 可逆电势/V | 1.2 | |||
H2, O2, H2O(vapor)的 黏度/(kg·m-1·s-1) | 8.411e-6,1.919e-5, 1.34e-5 | 传热系数/ (W·m-2·K-1) | 20 |
1 | LIU Q S, LAN F C, CHEN J Q, et al. A review of proton exchange membrane fuel cell water management: membrane electrode assembly[J]. Journal of Power Sources, 2022,517. |
2 | YONG Z, HE S R, JIANG X H, et al. Performance study on a large-scale proton exchange membrane fuel cell with cooling[J]. International Journal of Hydrogen Energy, 2022,47(18): 10381-10394. |
3 | ZHANG S Y, YANG Q G, XU H T, et al. Numerical investigation on the performance of PEMFC with rib-like flow channels[J]. International Journal of Hydrogen Energy, 2022,47(85): 36254-36263. |
4 | WANG Y, SUN Z Y, YANG L. Enhancement effects of the obstacle arrangement and gradient height distribution in serpentine flow-field on the performances of a PEMFC[J]. Energy Conversion and Management, 2022,252. |
5 | ZHANG Z H, WANG C H, CHEN C D. Numerical study on the effect of a novel staggered flow field on the performance of proton exchange membrane fuel cell[J]. International Journal of Energy Research, 2022,46(13): 18648-18662. |
6 | CAI Y, WU D, SUN J, et al. The effect of cathode channel blockages on the enhanced mass transfer and performance of PEMFC[J]. Energy, 2021,222: 119951. |
7 | ATYABI S A, AFSHARI E. Three-dimensional multiphase model of proton exchange membrane fuel cell with honeycomb flow field at the cathode side[J]. Journal of Cleaner Production, 2019,214: 738-748. |
8 | SHEN J, TU Z, CHAN S H. Enhancement of mass transfer in a proton exchange membrane fuel cell with blockage in the flow channel[J]. Applied Thermal Engineering, 2019,149: 1408-1418. |
9 | WANG Y, WANG C Y. Two-phase transients of polymer electrolyte fuel cells[J]. Journal of The Electrochemical Society, 2007,154(7): B636-B643. |
10 | NIU Z Q, FAN L H, BAO Z M, et al. Numerical investigation of innovative 3D cathode flow channel in proton exchange membrane fuel cell[J]. International Journal of Energy Research, 2018,42(10): 3328-3338. |
11 | WANG X, QIN Y, WU S, et al. Numerical and experimental investigation of baffle plate arrangement on proton exchange membrane fuel cell performance[J]. Journal of Power Sources, 2020,457: 228034. |
12 | GUO H, CHEN H, YE F, et al. Baffle shape effects on mass transfer and power loss of proton exchange membrane fuel cells with different baffled flow channels[J]. International Journal of Energy Research, 2019,43(7): 2737-2755. |
13 | ATYABI S A, AFSHARI E. Three-dimensional multiphase model of proton exchange membrane fuel cell with honeycomb flow field at the cathode side[J]. Journal of Cleaner Production, 2019,214: 738-748. |
14 | GHANBARIAN A, KERMANI M J. Enhancement of PEM fuel cell performance by flow channel indentation[J]. Energy Conversion and Management, 2016,110: 356-366. |
15 | TOMADAKIS M M, ROBERTSON T J. Viscous permeability of random fiber structures: comparison of electrical and diffusional estimates with experimental and analytical results[J]. Journal of Composite Materials, 2005,39(2): 163-188. |
16 | ZAMEL N, LI X G, SHEN J. Numerical estimation of the effective electrical conductivity in carbon paper diffusion media[J]. Applied Energy, 2012,93: 39-44. |
17 | ZAMEL N, LI X G, SHEN J. Correlation for the effective gas diffusion coefficient in carbon paper diffusion media[J]. Energy & Fuels, 2009,23(12): 6070-6078. |
18 | ZAMEL N, LI X G, SHEN J, et al. Estimating effective thermal conductivity in carbon paper diffusion media[J]. Chemical Engineering Science, 2010,65(13): 3994-4006. |
19 | ZUO Q S, XIE Y, GUAN Q W, et al. Effect of critical dual-carrier structure parameters on performance enhancement of a dual-carrier catalytic converter and the gasoline engine system[J]. Energy Conversion and Management, 2020,204. |
20 | WANG B W, CHEN W M, PAN F W, et al. A dot matrix and sloping baffle cathode flow field of proton exchange membrane fuel cell[J]. Journal of Power Sources, 2019,434. |
21 | CANO-ANDRADE S, HERNANDEZ-GUERRERO A, von SPAKOVSKY M R, et al. Current density and polarization curves for radial flow field patterns applied to PEMFCs (proton exchange membrane fuel cells)[J]. Energy, 2010,35(2): 920-927. |
22 | ANDISHEH-TADBIR M, ORFINO F P, KJEANG E. Three-dimensional phase segregation of micro-porous layers for fuel cells by nano-scale X-ray computed tomography[J]. Journal of Power Sources, 2016,310: 61-69. |
23 | CHEN H, GUO H, YE F, et al. Modification of the two-fluid model and experimental study of proton exchange membrane fuel cells with baffled flow channels[J]. Energy Conversion and Management, 2019,195: 972-988. |
24 | LI S A, YUAN J L, XIE G B, et al. Effects of agglomerate model parameters on transport characterization and performance of PEM fuel cells[J]. International Journal of Hydrogen Energy, 2018,43(17): 8451-8463. |
25 | IHONEN J, MIKKOLA M, LINDBERGH G. Flooding of gas diffusion backing in PEFCs - physical and electrochemical characterization[J]. Journal of The Electrochemical Society, 2004,151(8): A1152-A1161. |
26 | AFSHARI E, MOSHARAF-DEHKORDI M, RAJABIAN H. An investigation of the PEM fuel cells performance with partially restricted cathode flow channels and metal foam as a flow distributor[J]. Energy, 2017,118: 705-715. |
27 | EL-ZOHEIRY R M, OOKAWARA S, AHMED M. Efficient fuel utilization by enhancing the under-rib mass transport using new serpentine flow field designs of direct methanol fuel cells[J]. Energy Conversion and Management, 2017,144: 88-103. |
28 | ZHANG G B, XIE X, XIE B A, et al. Large-scale multi-phase simulation of proton exchange membrane fuel cell[J]. International Journal of Heat and Mass Transfer, 2019,130: 555-563. |
[1] | Xinjie Yuan,Fang Liu,Zhongjun Hou. Self-adaptive Porous Structure Detection of the Catalyst Layer in PEMFCs Based on GA-PSO-Otsu Algorithm [J]. Automotive Engineering, 2023, 45(9): 1702-1709. |
[2] | Wanteng Wang,Nan Li,Xueyi Bai,Dou Yang,Hang Li,Guijing Li. Research on Effect of Gas Diffusion Layer Layered Design on the Performance of PEMFC Stack [J]. Automotive Engineering, 2023, 45(9): 1720-1727. |
[3] | Lü Ping,Xin Sun,Youwei Xu,Bao Zhang,Jiahui Xu,Danmin Xing. An Experimental Study on Low Temperature Shutdown and Purging of Vehicle Fuel Cell Stack [J]. Automotive Engineering, 2023, 45(11): 2123-2129. |
[4] | Yaxiong Wang,Keke Wang,Shunbin Zhong,Hongwen He,Xuechao Wang. Research Progress on Durability Enhancement-oriented Electric Control Technology of Automotive Fuel Cell System [J]. Automotive Engineering, 2022, 44(4): 545-559. |
[5] | Xudong Liu,Xuezhe Tao Jianjian Wei. Analysis on the Key Influencing Factors of Distributed Current Measurement in PEMFC [J]. Automotive Engineering, 2021, 43(8): 1152-1160. |
|