Automotive Engineering ›› 2023, Vol. 45 ›› Issue (9): 1740-1752.doi: 10.19562/j.chinasae.qcgc.2023.ep.008
Special Issue: 新能源汽车技术-动力电池&燃料电池2023年
Previous Articles Next Articles
Meng Xiong1,2,Dong Zhang1(),Guojian You1,Tianfei Sun1,Kai Sheng1,Xuezhe Wei2
Received:
2022-12-29
Revised:
2023-02-23
Online:
2023-09-25
Published:
2023-09-23
Contact:
Dong Zhang
E-mail:zhangdong@caeri.com.cn
Meng Xiong,Dong Zhang,Guojian You,Tianfei Sun,Kai Sheng,Xuezhe Wei. Multi-objective Optimization Design of High Efficiency and High Utilization Magnetic Core of Wireless Charging of Electric Vehicles[J].Automotive Engineering, 2023, 45(9): 1740-1752.
1 | 未倩倩, 赵凌霄, 黄炘, 等. 浅析电动汽车无线充电技术现状及发展趋势[J]. 汽车电器, 2019(6): 18. |
WEI Q Q, ZHAO L X, HUANG X, et al. Development status and trend analysis of wireless charging for electric vehicles[J]. Electric Parts, 2019(6): 18. | |
2 | ZHANG Z, PANG H, GEORGIADIS A, et al. Wireless power transfer—an overview[J]. IEEE Transactions on Industrial Electronics, 2018, 66(2):1044. |
3 | 郭尧, 朱春波, 宋凯, 等. 平板磁芯磁耦合谐振式无线电能传输技术[J]. 哈尔滨工业大学学报, 2014, 46(5): 23. |
GUO Y, ZHU C B, SONG K, et al. Flat core coupled resonant wireless power transfer technology[J]. Journal of Harbin Institute of Technology, 2014, 46(5): 23. | |
4 | 黄辉, 黄学良, 谭林林,等. 基于磁场谐振耦合的无线电力传输发射及接收装置的研究[J]. 电工电能新技术, 2011, 30(1): 32. |
HUANG H, HUANG X L, TAN L L, et al. Research on wireless power transmission and receiving device based on magnetic resonance coupling[J]. Advanced Technology of Electrical Engineering and Energy, 2011, 30(1): 32. | |
5 | 振勇, 王春芳, 李聃. 自动导引车无线充电系统中发射线圈优化设计[J]. 电源学报, 2020, 18(2): 172. |
ZHEN Y, WANG C F, LI D. Optimization design of transmitting coil for wireless charging system in automated guided vehicle[J]. Journal of Power Supply, 2020, 18(2): 172. | |
6 | 马兵兵, 彭月明, 李文强. 智能网络汽车发展中的无线技术研究[J]. 内燃机与配件, 2019(24): 210. |
MA B B, PENG Y M, LI W Q. Research on wireless technology in the development of intelligent network automobile[J]. Internal Combustion Engine & Parts, 2019(24): 210. | |
7 | FANG L, CHEN K, YE J, et al. Research on the overall efficiency optimization of the bidirectional wireless power transfer system[J]. Transactions of China Electrotechnical Society, 2019. |
8 | MOHAMED A A S, BERZOY A, MOHAMMAD O. Magnetic design considerations of bidirectional inductive wireless power transfer system for EV applications[J]. IEEE Transactions on Magnetics, 2016, 53(6): 1. |
9 | WANG S, DORRELL D G. Loss analysis of circular wireless EV charging coupler[J]. IEEE Transactions on Magnetics, 2014, 50(11):1. |
10 | JAMES M, ROBERT S. Electric field breakdown in wireless power transfer systems due to ferrite dielectric polarizability[C]. 2016 IEEE Wireless Power Transfer Conference. Aveiro: IEEE, 2016: 1-4. |
11 | ZHANG J, LIU Y, DONG S, et al. Wireless power transfer based on the structure of plane-shaped cores[C]. IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer. Montréal: IEEE, 2018: 1-5. |
12 | CULLITY B D, GRAHAM C D. Soft magnetic materials[M]. Introduction to Magnetic Materials, Second Edition. United States: John Wiley & Sons, Inc, 2008. |
13 | SHIN J, SHIN S, KIM Y, et al. Design and implementation of shaped magnetic-resonance-based wireless power transfer system for roadway-powered moving electric vehicles[J]. IEEE Transactions on Industrial Electronics, 2013, 61(3):1179. |
14 | STRAUCH L, PAVLIN M, BREGAR V B. Optimization, design, and modeling of ferrite core geometry for inductive wireless power transfer[J]. International Journal of Applied Electromagnetics and Mechanics, 2015, 49(1): 145. |
15 | 刘志珍,曾浩,陈红星,等. 电动汽车无线充电系统磁芯结构的设计及优化[J]. 电机与控制学报, 2018, 22(1): 8. |
LIU Z Z, ZENG H, CHEN H X, et al. Design and optimization of core structure of wireless charging system for electric vehicle[J]. Electric Machines and Control, 2018, 22(1): 8. | |
16 | 孙跃,谭若兮,唐春森,等. 一种应用于电动汽车的新型耦合机构优化设计[J]. 西南交通大学学报, 2018, 53(5): 1078. |
SUN Y, TAN R X, TANG C S, et al. An optimized design of a new coupling mechanism for electric vehicles[J]. Journal of Southwest Jiaotong University, 2018, 53(5): 1078. | |
17 | MOHAMMAD M, CHOI S, ISLAM M Z, et al. Core design and optimization for better misalignment tolerance and higher range of wireless charging of PHEV[J]. IEEE Transactions on Transportation Electrification, 2017, 3(2): 1. |
18 | CHOI, SU Y, WOO Y, et al. Asymmetric coil sets for wireless stationary EV chargers with large lateral tolerance by dominant field analysis[J]. IEEE Transactions on Power Electronics, 2014, 12(29): 139. |
19 | 孙凯东. 电动汽车无线充电DD型线圈设计参数优化[J]. 科技创新导报, 2019, 16(28): 113. |
SUN K D. Optimization of design parameters of DD coil for electric vehicle wireless charging[J]. Science and Technology Innovation Herald, 2019, 16(28): 113. | |
20 | MCLEAN J, FOLTZ H, SUTTON R. Higher-order multipoles in the electromagnetic field produced by a wireless power transfer system employing DD polarized couplers[C]. IEEE Symposium on Electromagnetic Compatibility, Signal Integrity and Power Integrity, 2018: 477-482. |
21 | LUO Z, WEI X, PEARCE M G S, et al. Multiobjective optimization of inductive power transfer double-D pads for electric vehicles [J]. IEEE Transactions on Power Electronics, 2021, 36(5): 5135. |
22 | SAE. Wireless power transfer for light-duty plug-in/electric vehicles and alignment methodology [M]. SAE J2954 TIR. 2017. |
23 | XIONG M, DAI H, LI Q, et al. Design of the LCC-SP topology with a current doubler for 11-kW wireless charging system of electric vehicles[J]. IEEE Transactions on Transportation Electrification, 2021, 4(7): 1. |
24 | MOHAMMAD M, HAQUE M S, CHOI S. A litz-wire based passive shield design to limit EMF emission from wireless charging system[C]. 2018 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE, 2018. |
25 | MOHAMMAD M, CHOI S, ELBULUK M E. Loss minimization design of ferrite core in a DD-coil-based high-power wireless charging system for electrical vehicle application [J]. IEEE Transactions on Transportation Electrification, 2019, 5(4): 957. |
26 | DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II [J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182. |
[1] | Yuan Zou,Wenjing Sun,Xudong Zhang,Ya Wen,Wanke Cao,Zhaolong Zhang. Multi-objective Optimization of In-Vehicle Ethernet Network Architecture for Time-Sensitive Network [J]. Automotive Engineering, 2023, 45(5): 746-758. |
[2] | Zhiyong Duan,Jing Ma. Multi-objective Optimization of Lithium Battery Composite Cooling Structure Based on Heat Pipes and Liquid Cooling Plate [J]. Automotive Engineering, 2023, 45(11): 2047-2057. |
[3] | Jie Li,Xiaodong Wu,Min Xu,Yonggang Liu. Reinforcement Learning Based Multi-objective Eco-driving Strategy in Urban Scenarios [J]. Automotive Engineering, 2023, 45(10): 1791-1802. |
[4] | Zhimeng Liu,Chengxuan Tao,Lifang Wang,Yuwang Zhang,Shufan Li. Research on Strong Coupling Wireless Charging System Based on LCC/N Magnetic Integrated Compensation Network [J]. Automotive Engineering, 2021, 43(10): 1528-1535. |
[5] | Zhonghua Tang,Yansong He,Tao Ma,Zhifei Zhang,Hongjie Pu,Yun Li,Zhao Chen. Lightweight Design of Automotive Sound Package [J]. Automotive Engineering, 2021, 43(1): 113-120. |
[6] | Zhang Zhifei, Xue Haoxiang, Chen Zhao, Pu Hongjie, Xu Zhongming, He Yansong. Optimization of Front Suspension and Steering System Based on Grey Correlation TOPSIS Method [J]. Automotive Engineering, 2020, 42(8): 1082-1089. |
[7] | Wu Jingwei, Zhang Guangya, Lü Juncheng, Li Qian. Methodology Research on Optimization Design of Vehicle Interior Space Under Constraint of Body Performance [J]. Automotive Engineering, 2020, 42(8): 1117-1123. |
[8] | He Liangguo, Zhao Jie, Gu Xianguang. Lightweight and Crashworthiness Design of Vehicle BodyFront-end Based on Multi-cell Structure [J]. Automotive Engineering, 2020, 42(6): 832-839. |
[9] | Cui An, Xu Xiaoqian, Sun Wenlong, Yang Weili, Huang Xianqing, Liu Tianci. Study on Crashworthiness Optimization of Carbon-fiberSandwich Panel Structure with Polypropylene Foam Core [J]. Automotive Engineering, 2020, 42(6): 840-846. |
[10] | Yang Jing, Luo Xianfang, He Liange, Tao Wenzhu, Zhao Chao. Lean Burn Engine Retrofit Design and Timing Strategy Optimization [J]. Automotive Engineering, 2020, 42(4): 439-444. |
[11] | Wang Dengfeng, Xu Wenchao. Robust Optimization for Hybrid (Bolted/Bonded) Connection ofMagnesium-Aluminum Alloy Assembled Wheel [J]. Automotive Engineering, 2020, 42(4): 545-551. |
[12] | Chen Jing, Tang Aotian, Tian Kai, Liu Zhen. Lightweight Design of Carbon Fiber Composite Anti-collision Beam [J]. Automotive Engineering, 2020, 42(3): 390-395. |
[13] | Chen Jing, Peng Bo, Wang Dengfeng, Tang Aotian, Chen Shuming. Lightweight Design of Carbon Fiber Reinforced Composite Battery Box [J]. Automotive Engineering, 2020, 42(2): 257-263. |
[14] | Xu Jianquan, Yang Yanping. A Multi-objective Lightweight Optimization Study on FullLife Cycle of Electric and Conventional Vehicles [J]. Automotive Engineering, 2019, 41(8): 885-891. |
[15] | Zhou Qiaoying, Xue Zhigang, Zhou Wufeng, Lin Qiquan, Li Luoxing. Multi-objective Optimization on Structure Layout of Sliding Door Keeper [J]. Automotive Engineering, 2019, 41(6): 717-722. |
|