Automotive Engineering ›› 2023, Vol. 45 ›› Issue (11): 2047-2057.doi: 10.19562/j.chinasae.qcgc.2023.11.006
Special Issue: 新能源汽车技术-电驱动&能量管理2023年
Previous Articles Next Articles
Received:
2023-07-06
Revised:
2023-08-29
Online:
2023-11-25
Published:
2023-11-27
Contact:
Jing Ma
E-mail:jingma@chd.edu.cn
Zhiyong Duan,Jing Ma. Multi-objective Optimization of Lithium Battery Composite Cooling Structure Based on Heat Pipes and Liquid Cooling Plate[J].Automotive Engineering, 2023, 45(11): 2047-2057.
"
试验编号 | 试验因素 | 试验指标 | |||||||
---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | Tmax/℃ | ?T/℃ | ?p/Pa | |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 36.57 | 4.33 | 6 543.05 |
2 | 1 | 1 | 1 | 1 | 2 | 2 | 36.48 | 4.51 | 6 998.52 |
3 | 1 | 1 | 1 | 1 | 3 | 3 | 36.48 | 4.70 | 7 345.48 |
4 | 1 | 2 | 2 | 2 | 1 | 1 | 36.54 | 4.40 | 2 166.20 |
5 | 1 | 2 | 2 | 2 | 2 | 2 | 36.47 | 4.54 | 2 291.40 |
6 | 1 | 2 | 2 | 2 | 3 | 3 | 36.42 | 4.66 | 2 417.41 |
7 | 1 | 3 | 3 | 3 | 1 | 1 | 36.69 | 4.20 | 1 096.05 |
8 | 1 | 3 | 3 | 3 | 2 | 2 | 36.60 | 4.38 | 1 191.02 |
9 | 1 | 3 | 3 | 3 | 3 | 3 | 36.53 | 4.51 | 1 269.84 |
10 | 2 | 1 | 2 | 3 | 1 | 2 | 36.71 | 4.06 | 2 107.86 |
11 | 2 | 1 | 2 | 3 | 2 | 3 | 36.68 | 4.13 | 2 233.74 |
12 | 2 | 1 | 2 | 3 | 3 | 1 | 36.61 | 4.26 | 2 382.12 |
13 | 2 | 2 | 3 | 1 | 1 | 2 | 36.76 | 3.98 | 643.32 |
14 | 2 | 2 | 3 | 1 | 2 | 3 | 36.71 | 4.10 | 670.19 |
15 | 2 | 2 | 3 | 1 | 3 | 1 | 36.64 | 4.21 | 738.21 |
16 | 2 | 3 | 1 | 2 | 1 | 2 | 36.67 | 4.15 | 323.16 |
17 | 2 | 3 | 1 | 2 | 2 | 3 | 36.59 | 4.31 | 347.04 |
18 | 2 | 3 | 1 | 2 | 3 | 1 | 36.52 | 4.45 | 384.61 |
19 | 3 | 1 | 3 | 2 | 1 | 3 | 36.85 | 3.80 | 1 135.38 |
20 | 3 | 1 | 3 | 2 | 2 | 1 | 36.81 | 3.87 | 1 214.99 |
21 | 3 | 1 | 3 | 2 | 3 | 2 | 36.74 | 3.97 | 1 279.81 |
22 | 3 | 2 | 1 | 3 | 1 | 3 | 36.77 | 3.94 | 293.24 |
23 | 3 | 2 | 1 | 3 | 2 | 1 | 36.71 | 4.05 | 318.12 |
24 | 3 | 2 | 1 | 3 | 3 | 2 | 36.63 | 4.18 | 337.54 |
25 | 3 | 3 | 2 | 1 | 1 | 3 | 36.75 | 3.99 | 157.51 |
26 | 3 | 3 | 2 | 1 | 2 | 1 | 36.68 | 4.11 | 173.82 |
27 | 3 | 3 | 2 | 1 | 3 | 2 | 36.62 | 4.24 | 183.92 |
"
因素 | A | B | C | D | E | F | |
---|---|---|---|---|---|---|---|
?T | ki1 | 4.469 | 4.093 | 4.291 | 4.226 | 4.188 | 4.208 |
ki2 | 4.183 | 4.221 | 4.265 | 4.216 | 4.231 | 4.222 | |
ki3 | 4.015 | 4.353 | 4.111 | 4.179 | 4.241 | 4.237 | |
Ri | 0.454 | 0.26 | 0.18 | 0.082 | 0.053 | 0.029 | |
?p | ki1 | 3 479.9 | 569.7 | 2 543.4 | 1 247.7 | 1 607.3 | 1 668.6 |
ki2 | 1 092.2 | 3 471.2 | 1 568.2 | 2 606.0 | 1 715.4 | 1 706.3 | |
ki3 | 566 | 1 097.3 | 1 026.5 | 1 284.4 | 1 815.4 | 1 763.3 | |
Ri | 2 913.8 | 2 901.6 | 1 516.9 | 1 358.3 | 208.1 | 94.7 |
"
样本 序号 | 设计变量/mm | 目标函数 | ||||
---|---|---|---|---|---|---|
A | B | C | D | ?T/℃ | ?p /Pa | |
1 | 3.2 | 4.6 | -1.75 | 1.5 | 4.00 | 1 577.11 |
2 | 4.8 | 7.2 | 17.5 | 1.8 | 4.08 | 337.97 |
3 | 2.8 | 10 | -33.25 | 1.2 | 4.23 | 624.13 |
4 | 3.5 | 6 | 35 | 9 | 3.79 | 725.85 |
5 | 4.4 | 11.6 | 3.5 | 8.4 | 4.21 | 170.46 |
6 | 2.1 | 9.2 | 33.25 | 8.1 | 4.17 | 1 444.79 |
7 | 2.5 | 4.2 | 8.75 | 7.5 | 3.98 | 3 272.74 |
8 | 4.2 | 8 | -5.25 | 6.6 | 4.23 | 3 636.63 |
9 | 2 | 6.6 | 15.75 | 11.7 | 4.26 | 2 755.57 |
10 | 3.7 | 8.4 | -7 | 0.6 | 4.23 | 442.08 |
11 | 4.7 | 11 | 7 | 2.7 | 4.19 | 166.50 |
12 | 4.6 | 10.2 | -26.25 | 3.9 | 4.19 | 196.32 |
13 | 2.7 | 12 | 21 | 4.5 | 4.23 | 522.04 |
14 | 4.5 | 4.4 | 14 | 6 | 4.05 | 930.90 |
15 | 1.7 | 4.8 | -19.25 | 4.8 | 4.35 | 6 671.46 |
16 | 2.2 | 11.8 | 10.5 | 10.2 | 4.39 | 924.27 |
17 | 1.8 | 10.8 | -3.5 | 0.9 | 4.48 | 1 791.17 |
18 | 4.3 | 6.8 | -29.75 | 10.5 | 4.16 | 441.83 |
19 | 1.3 | 5.8 | 31.5 | 6.9 | 4.16 | 8 178.04 |
20 | 2.9 | 8.6 | -8.75 | 11.1 | 4.17 | 688.61 |
21 | 4.9 | 5.6 | -14 | 3 | 4.14 | 508.92 |
22 | 1.9 | 7 | -15.75 | 0 | 4.4 | 3 085.39 |
23 | 2.4 | 7.8 | 0 | 5.1 | 4.26 | 1 398.59 |
24 | 1.2 | 9 | -24.5 | 4.2 | 4.5 | 6 178.49 |
25 | 4 | 9.4 | 29.75 | 5.7 | 4.06 | 296.50 |
26 | 3 | 11.4 | -12.25 | 5.4 | 4.26 | 421.75 |
27 | 1.6 | 11.2 | -22.75 | 9.3 | 4.44 | 1 756.09 |
28 | 5 | 7.6 | 19.25 | 9.6 | 4.06 | 260.97 |
29 | 3.8 | 4 | -17.5 | 7.2 | 4.16 | 1 538.45 |
30 | 3.6 | 9.8 | 22.75 | 12 | 4.03 | 316.24 |
31 | 3.1 | 6.2 | 28 | 3.6 | 3.87 | 966.01 |
32 | 2.6 | 8.2 | -35 | 7.8 | 4.15 | 962.95 |
33 | 3.9 | 5.4 | 1.75 | 11.4 | 4.18 | 823.29 |
34 | 1.4 | 5.2 | 12.25 | 2.1 | 4.3 | 804.44 |
35 | 2.3 | 5 | -21 | 10.8 | 4.15 | 2 981.50 |
36 | 1.5 | 8.8 | 26.25 | 2.4 | 4.16 | 2 873.72 |
37 | 1.1 | 7.4 | -10.5 | 8.7 | 4.46 | 1 055.29 |
38 | 1 | 10.4 | 5.25 | 6.3 | 4.63 | 9 370.14 |
39 | 3.4 | 6.4 | -31.5 | 3.3 | 3.99 | 723.48 |
40 | 4.1 | 10.6 | -28 | 9.9 | 4.19 | 225.82 |
41 | 3.3 | 9.6 | 24.5 | 0.3 | 4.07 | 426.63 |
1 | 曾祥兵, 谢堃, 张伟, 等. 新型动力电池热管理系统设计及性能研究[J]. 汽车工程, 2022, 44(4): 476-481. |
ZENG X B,XIE K,ZHANG W, et al. Design and performance study of a new type of thermal management system for traction battery[J]. Automotive Engineering, 2022, 44(4): 476-481. | |
2 | 戴海燕, 王玉兴. 基于电化学热耦合模型的电动汽车电池模组热特性研究[J].汽车工程,2020,42(5):665-671,687. |
DAI H Y, WANG Y X. Study on thermal characteristics of battery modules of electric vehicle based on electrochemical thermal coupling model[J]. Automotive Engineering, 2020,42(5):665-671,687. | |
3 | LIN J Y, LIU X H, LI S, et al. A review on recent progress, challenges and perspective of battery thermal management system[J]. International Journal of Heat and Mass Transfer, 2021, 167: 120834. |
4 | ZHOU H B, ZHOU F, ZHANG Q, et al. Thermal management of cylindrical lithium-ion battery based on a liquid cooling method with half-helical duct[J]. Applied Thermal Engineering, 2019, 162: 114257. |
5 | ABDELKAREEM M A, MAGHRABIE H M, ABOKHALIL A G, et al. Thermal management systems based on heat pipes for batteries in EVs/HEVs[J]. Journal of Energy Storage, 2022, 51: 104384. |
6 | LUO J, ZOU D, WANG Y S, et al. Battery thermal management systems (BTMs) based on phase change material (PCM): a comprehensive review[J]. Chemical Engineering Journal, 2022, 430: 132741. |
7 | 丹聃, 姚程宁, 张扬军, 等. 基于热管技术的动力电池热管理系统研究现状及展望[J]. 科学通报, 2019, 64(7): 682-693. |
DAN D, YAO C N, ZHANG Y J, et al. Research progress and future prospects of battery thermal management system based on heat pipe technology[J]. Chinese Science Bulletin, 2019, 64(7): 682-693. | |
8 | ABDELKAREEM M A, MAGHRABIE H M, KHALIL A G, et al. Thermal management systems based on heat pipes for batteries in EVs/HEVs [J]. Journal of Energy Storage, 2022, 51: 104384. |
9 | YUE Q L, HE C X, JIANG H R, et al. A hybrid battery thermal management system for electric vehicles under dynamic working conditions[J]. International Journal of Heat and Mass Transfer, 2021, 164: 10. |
10 | HE L F, TANG X W, LUO Q L, et al. Structure optimization of a heat pipe-cooling battery thermal management system based on fuzzy grey relational analysis[J]. International Journal of Heat and Mass Transfer, 2022, 182: 14. |
11 | JANG D S, YUN S, HONG S H, et al. Performance characteristics of a novel heat pipe-assisted liquid cooling system for the thermal management of lithium-ion batteries[J]. Energy Conversion and Management, 2022, 251: 115001. |
12 | CHAVAN U, PRAJAPATI O, HUJARE P. Lithium-ion battery thermal management by using coupled heat pipe and liquid cold plate[J]. Materials Today: Proceedings, 2023, 80: 382-388. |
13 | WANG J Q, GAN Y H, LIANG J L, et al. Sensitivity analysis of factors influencing a heat pipe-based thermal management system for a battery module with cylindrical cells[J]. Applied Thermal Engineering, 2019, 151: 475-485. |
14 | HUANG H F, WANG H, GU J Q, et al. High-dimensional model representation-based global sensitivity analysis and the design of a novel thermal management system for lithium-ion batteries[J]. Energy Conversion and Management, 2019, 190: 54-72. |
15 | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
LIU X X, SUN A L, TIAN C. Research on liquid cooling and heat dissipation of lithium-ion battery pack based on bionic wings vein channel cold plate[J]. Energy Storage Science and Technology, 2022, 11(7): 2266-2273. | |
16 | BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general energy balance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132(1): 5-12. |
17 | 马菁,段志勇,孙勇飞,等.基于热管的储能锂电池散热特性数值模拟研究[J/OL].中国电机工程学报: 1-8[2023-04-12]. |
MA J, DUAN Z Y, SUN Y F, et al. Numerical simulation on the heat dissipation characteristics of lithium battery for energy storage based on heat pipe[J/OL]. Proceedings of the CSEE: 1-8[2023-04-12]. | |
18 | LAI Y X, WU W X, CHEN K, et al. A compact and lightweight liquid-cooled thermal management solution for cylindrical lithium-ion power battery pack [J]. International Journal of Heat and Mass Transfer, 2019, 144: 12. |
19 | DENG T, RAN Y, YIN Y, et al. Multi-objective optimization design of double-layered reverting cooling plate for lithium-ion batteries[J]. International Journal of Heat and Mass Transfer, 2019, 143: 118580. |
20 | YANG Z, YIN Z Q, WANG D H, et al. Effects of ternary sintering aids and sintering parameters on properties of alumina ceramics based on orthogonal test method[J]. Materials Chemistry and Physics, 2020, 241: 122453. |
21 | DENG C Y, MIAO J G, WEI B, et al. Evaluation of machine tools with position-dependent milling stability based on Kriging model[J]. International Journal of Machine Tools and Manufacture, 2018, 124: 33-42. |
22 | JI N, ZHANG W X, YU Y Y, et al. Multi-Objective optimization of injection molding based on optimal latin hypercube sampling method and NSGA-II algorithm[J]. Engineering Plastics Application, 2020,48(3):72-77. |
23 | BAGHERZADEH S A, D’ORAZIO A, KARIMIPOUR A, et al. A novel sensitivity analysis model of EANN for F-MWCNTs-Fe3O4/EG nanofluid thermal conductivity: Outputs predicted analytically instead of numerically to more accuracy and less costs [J]. Physica A: Statistical Mechanics and its Applications, 2019, 521: 406-415. |
[1] | Meng Xiong,Dong Zhang,Guojian You,Tianfei Sun,Kai Sheng,Xuezhe Wei. Multi-objective Optimization Design of High Efficiency and High Utilization Magnetic Core of Wireless Charging of Electric Vehicles [J]. Automotive Engineering, 2023, 45(9): 1740-1752. |
[2] | Yuan Zou,Wenjing Sun,Xudong Zhang,Ya Wen,Wanke Cao,Zhaolong Zhang. Multi-objective Optimization of In-Vehicle Ethernet Network Architecture for Time-Sensitive Network [J]. Automotive Engineering, 2023, 45(5): 746-758. |
[3] | Xinglong Lu,Furen Zhang,Haibo Zhao,Shizheng Sun,Xue Li,Haodong Zhao. Optimized Design and Performance Study of New Liquid Cooling Plate Based on Concentric Circle Structure [J]. Automotive Engineering, 2023, 45(11): 2058-2069. |
[4] | Jie Li,Xiaodong Wu,Min Xu,Yonggang Liu. Reinforcement Learning Based Multi-objective Eco-driving Strategy in Urban Scenarios [J]. Automotive Engineering, 2023, 45(10): 1791-1802. |
[5] | Guang Chen,Chenyang Wei,Xiaoyu Li,Guoxi Jing. Judgment of Critical Condition for Crash Safety of Lithium Battery Pack Based on Simplified Beam Element Model [J]. Automotive Engineering, 2022, 44(5): 722-729. |
[6] | Xiaogang Wu,Mingshan Qi,Jiuyu Du,N. I. Shchurov,A. A. Shtang. Structure Design of Lithium-ion Battery Cooling System at Different Charging Rates [J]. Automotive Engineering, 2022, 44(4): 482-494. |
[7] | Zhonghua Tang,Yansong He,Tao Ma,Zhifei Zhang,Hongjie Pu,Yun Li,Zhao Chen. Lightweight Design of Automotive Sound Package [J]. Automotive Engineering, 2021, 43(1): 113-120. |
[8] | Jin Bowen, Qiao Huimin, Pan Tianhong, Chen Shan. Lithium Battery SOC Estimation Based on Internal Resistance Power Consumption [J]. Automotive Engineering, 2020, 42(8): 1008-1015. |
[9] | Zhang Zhifei, Xue Haoxiang, Chen Zhao, Pu Hongjie, Xu Zhongming, He Yansong. Optimization of Front Suspension and Steering System Based on Grey Correlation TOPSIS Method [J]. Automotive Engineering, 2020, 42(8): 1082-1089. |
[10] | Wu Jingwei, Zhang Guangya, Lü Juncheng, Li Qian. Methodology Research on Optimization Design of Vehicle Interior Space Under Constraint of Body Performance [J]. Automotive Engineering, 2020, 42(8): 1117-1123. |
[11] | He Liangguo, Zhao Jie, Gu Xianguang. Lightweight and Crashworthiness Design of Vehicle BodyFront-end Based on Multi-cell Structure [J]. Automotive Engineering, 2020, 42(6): 832-839. |
[12] | Cui An, Xu Xiaoqian, Sun Wenlong, Yang Weili, Huang Xianqing, Liu Tianci. Study on Crashworthiness Optimization of Carbon-fiberSandwich Panel Structure with Polypropylene Foam Core [J]. Automotive Engineering, 2020, 42(6): 840-846. |
[13] | Yang Jing, Luo Xianfang, He Liange, Tao Wenzhu, Zhao Chao. Lean Burn Engine Retrofit Design and Timing Strategy Optimization [J]. Automotive Engineering, 2020, 42(4): 439-444. |
[14] | Wang Dengfeng, Xu Wenchao. Robust Optimization for Hybrid (Bolted/Bonded) Connection ofMagnesium-Aluminum Alloy Assembled Wheel [J]. Automotive Engineering, 2020, 42(4): 545-551. |
[15] | Chen Jing, Tang Aotian, Tian Kai, Liu Zhen. Lightweight Design of Carbon Fiber Composite Anti-collision Beam [J]. Automotive Engineering, 2020, 42(3): 390-395. |