Automotive Engineering ›› 2022, Vol. 44 ›› Issue (4): 482-494.doi: 10.19562/j.chinasae.qcgc.2022.04.004
Special Issue: 新能源汽车技术-动力电池&燃料电池2022年
Previous Articles Next Articles
Xiaogang Wu1,Mingshan Qi1,Jiuyu Du2(),N. I. Shchurov3,A. A. Shtang3
Received:
2021-11-08
Revised:
2021-12-06
Online:
2022-04-25
Published:
2022-04-22
Contact:
Jiuyu Du
E-mail:dujiuyu@tsinghua.edu.cn
Xiaogang Wu,Mingshan Qi,Jiuyu Du,N. I. Shchurov,A. A. Shtang. Structure Design of Lithium-ion Battery Cooling System at Different Charging Rates[J].Automotive Engineering, 2022, 44(4): 482-494.
1 | LIU J W, LI H, LI W Y, et al. Thermal characteristics of power battery pack with liquid-based thermal management[J]. Applied Thermal Engineering, 2020, 164: 114421. |
2 | ZHANG G S, CAO L, GE S H, et al. In situ measurement of radial temperature distributions in cylindrical Li[J]. Journal of The Electrochemical Society, 2014, 161(10): A1499. |
3 | AN K, BARAI P, SMITH K, et al. Probing the thermal implications in mechanical degradation of lithium[J]. Journal of The Electrochemical Society, 2014, 161(6): A1058-A1070. |
4 | KEYSER M, PESARAN A, LI Q B, et al. Enabling fast charging-battery thermal considerations[J]. Journal of Power Sources, 2017, 367: 228-236 |
5 | 张明轩, 冯旭宁, 欧阳明高, 等. 三元锂离子动力电池针刺热失控实验与建模[J].汽车工程, 2015, 37(7): 743-750,756. |
ZHANG M X, FENG X N, OUYANG M G, et al. Experiments and modeling of nail penetration thermal runaway in a ncm li-ion power battery[J]. Automotive Engineering, 2015, 37(7): 743-750,756. | |
6 | LU M, ZHANG X, JI J, et al. Research progress on power battery cooling technology for electric vehicles[J]. Journal of Energy Storage, 2020, 27(Feb.):101155.1-101155.16. |
7 | XIA B, LIU Y, HUANG R, et al. Thermal analysis and improvements of the power battery pack with liquid cooling for electric vehicles[J]. Energies, 2019, 12(16):3045. |
8 | 申明, 高青, 王炎, 等. 电动汽车电池热管理系统设计与分析[J]. 浙江大学学报(工学版), 2019, 53(7): 1398-1430. |
SHENG M, GAO Q, WANG Y, et al. Design and analysis of battery thermal management system for electric vehicle[J]. Journal of Zhejiang University (Engineering Science), 2019, 53(7): 1398-1430. | |
9 | WORWOOD D, KELLNER Q, WOJTALA M, et al. A new approach to the internal thermal management of cylindrical battery cells for automotive applications[J]. Journal of Power Sources,2017, 346: 151-166. |
10 | BANDHAUER T M, GARIMELLA S. Passive, internal thermal management system for batteries using microscale liquid-vapor phase change[J]. Applied Thermal Engineering, 2013, 61(2): 756-769. |
11 | DENG T, ZHANG G D, YAN R. Study on thermal management of rectangular Li-ion battery with serpentine-channel cold plate[J]. International Journal of Heat and Mass Transfer, 2018, 125: 143-152. |
12 | PATIL M S, SEO J H, PANCHAL S, et al. Investigation on thermal performance of water-cooled Li-ion pouch cell and pack at high discharge rate with U-turn type microchannel cold plate[J]. International Journal of Heat and Mass Transfer, 2020, 155: 119728. |
13 | ZHANG T S, GAO Q, WANG G H, et al. Investigation on the promotion of temperature uniformity for the designed battery pack with liquid flow in cooling process[J]. Applied Thermal Engineering, 2017, 116: 655-662. |
14 | HALES A, MARZOOK M W, DIAZ L B, et al. The cell cooling coefficient: a standard to define heat rejection from lithium[J]. Journal of The Electrochemical Society, 2019, 166(12): A2383. |
15 | 杨莹莹, 魏学哲, 刘耀锋, 等. 车用锂离子电池交流加热的研究[J]. 汽车工程, 2016, 38(7): 901-908. |
YANG Y Y, WEI X Z, LIU Y F, et al. A research on the AC heating of automotive lithium-ion battery[J]. Automotive Engineering, 2016, 38(7): 901-908. | |
16 | SHENG L, SU L, ZHANG H, et al. An improved calorimetric method for characterizations of the specific heat and the heat generation rate in a prismatic lithium ion battery cell[J]. Energy Conversion and Management, Elsevier, 2019, 180(August 2018): 724-732. |
17 | SAW L H, SOMASUNDARAM K, YE Y, et al. Electro-thermal analysis of lithium iron phosphate battery for electric vehicles[J]. Journal of Power Sources, 2014, 249: 231-238. |
18 | LIN C, WANG F, FAN B, et al. Comparative study on the heat generation behavior of lithium-ion batteries with different cathode materials using accelerating rate calorimetry[J]. Energy Procedia, 2017, 142: 3369-3374. |
19 | LIU G, OUYANG M G, LU L, et al. Analysis of the heat generation of lithium-ion battery during charging and discharging considering different influencing factors[J]. Journal of Thermal Analysis and Calorimetry, 2014, 116(2): 1001-1010. |
20 | CHEN S C, WAN C C, WANG Y Y. Thermal analysis of lithium-ion batteries[J]. Journal of Power Sources, 2005, 140(1): 111-124. |
21 | WANG K, GAO F, ZHU Y, et al. Internal resistance and heat generation of soft package Li4Ti5O12 battery during charge and discharge[J]. Energy, 2018, 149: 364-374. |
22 | ZHANG J, WU B, LI Z, et al. Simultaneous estimation of thermal parameters for large-format laminated lithium-ion batteries[J]. Journal of Power Sources, 2014, 259: 106-116. |
23 | HU X, JIANG J, CAO D, et al. Battery health prognosis for electric vehicles using sample entropy and sparse Bayesian predictive modeling[J]. IEEE Transactions on Industrial Electronics, IEEE, 2016, 63(4): 2645-2656. |
24 | Johnson Matthey Battery Systems. Our guide to batteries[R]. 2012. |
25 | WEMER D, LOGES A, BECKER D J, et al. Thermal conductivity of Li-ion batteries and their electrode configurations - a novel combination of modelling and experimental approach[J]. Journal of Power Sources, 2017, 364: 72-83. |
26 | CHENG X, TANG Y, WANG S. Thermophysical parameter measurements for lithium-ion batteries: a review[J]. Journal of Mechanical Engineering, 2019, 55(14): 140-150. |
27 | 郑海, 续彦芳, 刘汉涛, 等. 基于液体介质的锂离子动力电池热管理系统实验分析[J]. 储能科学与技术, 2020, 9(3): 1-7. |
ZHENG H, XU Y F, LIU H T, et al. Experimental analysis of thermal management system of lithium ion power battery based on liquid medium[J]. Energy Storage Science and Technology, 2020, 9(3): 1-7. | |
28 | FORGEZ C, DO D V, FRIEDRICH G, et al. Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery[J]. Journal of Power Sources, 2010, 195(9): 2961-2968. |
29 | SHENG L, SU L, ZHANG H, et al. An improved calorimetric method for characterizations of the specific heat and the heat generation rate in a prismatic lithium ion battery cell[J]. Energy Conversion and Management, Elsevier, 2019, 180(August 2018): 724-732. |
30 | PATIL M S, SEO J H, PANCHAL S, et al. Numerical study on sensitivity analysis of factors influencing liquid cooling with double cold‐plate for lithium‐ion pouch cell[J]. International Journal of Energy Research, 2020, 45(2): 2533-2559. |
31 | JARRETT A, KIM I Y. Design optimization of electric vehicle battery cooling plates for thermal performance[J]. Journal of Power Sources,2011, 196(23): 10359-10368. |
[1] | Meng Xiong,Dong Zhang,Guojian You,Tianfei Sun,Kai Sheng,Xuezhe Wei. Multi-objective Optimization Design of High Efficiency and High Utilization Magnetic Core of Wireless Charging of Electric Vehicles [J]. Automotive Engineering, 2023, 45(9): 1740-1752. |
[2] | Zhongqiang Wu,Changxing Zhang. Distributed Charging Control of Electric Vehicles Considering Distribution Grid Load [J]. Automotive Engineering, 2023, 45(4): 598-608. |
[3] | Zhiyong Duan,Jing Ma. Multi-objective Optimization of Lithium Battery Composite Cooling Structure Based on Heat Pipes and Liquid Cooling Plate [J]. Automotive Engineering, 2023, 45(11): 2047-2057. |
[4] | Yuming Peng,Mingxiao Yuan,Zhuoxin Jing,Yonglin Zhang,Gang Huang. Improved Design of Battery Module Cooling System Under the Influence of Busbar Heat Generation [J]. Automotive Engineering, 2022, 44(6): 859-867. |
[5] | Yan Ma,Jiayi Li,Qian Ma,Mingchao Chen. Optimization Strategy of Thermal Management of Power Battery Pack Based on Iterative Dynamic Programming [J]. Automotive Engineering, 2022, 44(5): 709-721. |
[6] | Guang Chen,Chenyang Wei,Xiaoyu Li,Guoxi Jing. Judgment of Critical Condition for Crash Safety of Lithium Battery Pack Based on Simplified Beam Element Model [J]. Automotive Engineering, 2022, 44(5): 722-729. |
[7] | Tao Sun,Xia Zheng,Yuejiu Zheng,Yufang Lu,Ke Kuang,Xuebing Han. Fast Charging Control of Lithium-ion Batteries Based on Electrochemical- thermal Coupling Model [J]. Automotive Engineering, 2022, 44(4): 495-504. |
[8] | Yu Chen,Xiaogang Wu,Jiuyu Du,Jinlei Sun. Research on Energy Management of Microgrid with Consideration of Taxi Charging Behavior [J]. Automotive Engineering, 2022, 44(4): 525-534. |
[9] | Huiyan Zhang,Xuyang Tang,Lei Shi,Kangyao Deng. Study on Altitude Self-adaption and Adjustment Capacity of Turbocharging System [J]. Automotive Engineering, 2022, 44(2): 256-263. |
[10] | Chongxiang Mo,Jian Wu,Hongzhong Qi. Battery SOC Balance Control Under Idle Charging Condition [J]. Automotive Engineering, 2021, 43(3): 387-396. |
[11] | Zhimeng Liu,Chengxuan Tao,Lifang Wang,Yuwang Zhang,Shufan Li. Research on Strong Coupling Wireless Charging System Based on LCC/N Magnetic Integrated Compensation Network [J]. Automotive Engineering, 2021, 43(10): 1528-1535. |
[12] | Jin Bowen, Qiao Huimin, Pan Tianhong, Chen Shan. Lithium Battery SOC Estimation Based on Internal Resistance Power Consumption [J]. Automotive Engineering, 2020, 42(8): 1008-1015. |
[13] | Wang Hongchao, Shan Xizhuang, Yang Zhigang. Study on Fuzzy Control of Cooling System with Matrix Fans [J]. Automotive Engineering, 2020, 42(3): 345-352. |
[14] | Zhang Zhongjie, Liu Ruilin, Yang Chunhao, Zhang Junyi, Jiao Yufei. Research on Control Strategies of Two-stage Turbocharging System with Turbo By-pass Valves at Variable Altitudes [J]. Automotive Engineering, 2020, 42(2): 149-156. |
[15] | Wang Yongsheng, Luo Yugong, Gu Yanchen, Chen Rui, Qi Yunlong, Jiang Fachao. Precise Adjustment Strategy of Autonomous Parking for Automatic Charging [J]. Automotive Engineering, 2020, 42(12): 1701-1709. |
|