1 |
BADUE C, GUIDOLINI R, CARNEIRO R V, et al. Self-driving cars: a survey[J]. Expert Systems with Applications, 2021, 165(1): 1-34.
|
2 |
TEETI I, KHAN S, SHAHBAZ A, et al. Vision-based intention and trajectory prediction in autonomous vehicles: a survey[C]. International Joint Conference on Artificial Intelligence, 2022: 5630-5637.
|
3 |
WANG Z, WU Y, NIU Q. Multi-sensor fusion in automated driving: a survey[J]. IEEE Access, 2019, 8: 2847-2868.
|
4 |
LI Y, DENG J, ZHANG Y, et al. EZFusion: a close look at the integration of LiDAR, millimeter-wave radar, and camera for accurate 3D object detection and tracking[J]. IEEE Robotics and Automation Letters, 2022, 7(4): 11182-11189.
|
5 |
CAESAR H, BANKITI V, LANG A H, et al. Nuscenes: a multimodal dataset for autonomous driving[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11621-11631.
|
6 |
SUN P, KRETZSCHMAR H, DOTIWALLA X, et al. Scalability in perception for autonomous driving: waymo open dataset[C].Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 2446-2454.
|
7 |
SINGH A. Vision-radar fusion for robotics bev detections: a survey[C]. 2023 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2023: 1-7.
|
8 |
TANG Q, LIANG J, ZHU F. A comparative review on multi-modal sensors fusion based on deep learning[J]. Signal Processing, 2023: 109165.
|
9 |
LIN C, TIAN D, DUAN X, et al. CL3D: camera-LiDAR 3D object detection with point feature enhancement and point-guided fusion[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 18040-18050.
|
10 |
CHEN W, TIAN W, XIE X, et al. RGB image-and LIDAR-based 3D object detection under multiple lighting scenarios[J]. Automotive Innovation, 2022, 5(3): 251-259.
|
11 |
CHEN X, ZHANG T, WANG Y, et al. Futr3D: a unified sensor fusion framework for 3D detection[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 172-181.
|
12 |
LI H, ZHANG Z, ZHAO X, et al. Enhancing multi-modal features using local self-attention for 3D object detection[C]. European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2022: 532-549.
|
13 |
YIN T, ZHOU X, KRÄHENBÜHL P. Multimodal virtual point 3D detection[J]. Advances in Neural Information Processing Systems, 2021, 34: 16494-16507.
|
14 |
JIANG K, SHI Y, ZHOU T, et al. PTMOT: a probabilistic multiple object tracker enhanced by tracklet confidence for autonomous driving[J]. Automotive Innovation, 2022, 5(3): 260-271.
|
15 |
ZHOU Y, DONG Y, HOU F, et al. Review on millimeter-wave radar and camera fusion technology[J]. Sustainability, 2022, 14(9): 5114.
|
16 |
赵树廉, 吴思宇, 赵鹏云, 等. 基于最小临近点迹和航迹关联的多源目标融合方法[J]. 汽车工程学报, 2022, 12(5): 593-603.
|
|
ZHAO S L, WU S Y, ZHAO P Y, et al. Multi-source target fusion method based on the nearest positioning and trajectory data association[J]. Chinese Journal of Automotive Engineering, 2022, 12(5): 593-603.
|
17 |
刘志强, 张光林, 郑曰文,等. 基于检测无迹信息融合算法的多传感融合方法[J]. 汽车工程, 2020, 42(7): 854-859.
|
|
LIU Z Q, ZHANG G L, ZHENG Y W, et al. Multi-sensor fusion method based on checking unscented information fusion algorithm[J]. Automotive Engineering, 2020, 42(7): 854-859.
|
18 |
HAO X, XIA Y, YANG H, et al. Asynchronous information fusion in intelligent driving systems for target tracking using cameras and radars[J]. IEEE Transactions on Industrial Electronics, 2022, 70(3): 2708-2717.
|
19 |
文礼杰, 谢荣, 许军立,等. 基于相容系数的多传感器融合目标识别方法[J]. 电子测量与仪器学报, 2023, 37(4): 142-153.
|
|
WEN L J, XIE R, XU J L, et al. Multi-sensor fusion target recognition method based on compatibility coefficient [J]. Journal of Electronic Measurement and Instrumentation, 2023, 37(4): 142-153.
|
20 |
ZHANG B, SMALL D S, LASATER K B, et al. Matching one sample according to two criteria in observational studies[J]. Journal of the American Statistical Association, 2023, 118(542): 1140-1151.
|
21 |
LIU Y, WANG Z, PENG L, et al. A detachable and expansible multisensor data fusion model for perception in level 3 autonomous driving system[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 24(2): 1814-1827.
|
22 |
宋强, 熊伟, 何友. 多传感器多目标系统误差融合估计算法[J]. 北京航空航天大学学报, 2012, 38(6): 835-841.
|
|
SONG Q, XIONG W, HE Y. Multi-sensor multi-target systematic bias fusion estimation algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(6): 835-841.
|
23 |
LIU Q, ZHOU W, ZHANG Y, et al. Multi-target detection based on multi-sensor redundancy and dynamic weight distribution for driverless cars[C]. 2021 International Conference on Communications, Information System and Computer Engineering (CISCE). IEEE, 2021: 229-234.
|
24 |
IGNATIOUS H A, EL-SAYED H, KULKARNI P. Multilevel data and decision fusion using heterogeneous sensory data for autonomous vehicles[J]. Remote Sensing, 2023, 15(9): 2256.
|
25 |
IVANOV A, TONCHEV K, POULKOV V, et al. Graph-based resource allocation for integrated space and terrestrial communications[J]. Sensors, 2022, 22(15): 5778.
|
26 |
YANG K, TANG X, LI J, et al. Uncertainties in onboard algorithms for autonomous vehicles: challenges, mitigation, and perspectives[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(9): 8963-8987.
|
27 |
PIAZZONI A, CHERIAN J, SLAVIK M, et al. Modeling perception errors towards robust decision making in autonomous vehicles[C]. Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence, 2021: 3494-3500.
|
28 |
XU L, QIAN B, HU R, et al. Lagrange heuristic algorithm incorporated with decomposition strategy for green multi-depot heterogeneous-fleet vehicle routing problem[C]. International Conference on Intelligent Computing. Singapore: Springer Nature Singapore, 2023: 537-548.
|
29 |
ULTRALYTICS. YOLOv5[DB/OL]. (2024-01-22). https://github.com/ultralytics/yolov5/tree/v5.0.
|