Automotive Engineering ›› 2024, Vol. 46 ›› Issue (11): 2039-2045.doi: 10.19562/j.chinasae.qcgc.2024.11.010
Previous Articles Next Articles
Qin Shi1,2,3,Zhiwei Li1,2,3,Teng Cheng1,2,3(),Qiang Zhang1,2,3,4,Wenchong Wang4
Received:
2024-04-30
Revised:
2024-06-06
Online:
2024-11-25
Published:
2024-11-22
Contact:
Teng Cheng
E-mail:cht616@hfut.edu.cn
Qin Shi,Zhiwei Li,Teng Cheng,Qiang Zhang,Wenchong Wang. Intrusion Detection Framework for CAN Networks Based on Evidence Deep Learning[J].Automotive Engineering, 2024, 46(11): 2039-2045.
"
方法 | 攻击 类型 | Accuracy | Precision | Recall | F1 Score |
---|---|---|---|---|---|
HyDRL-IDS | Normal DoS Fuzzy GEAR RPM | 0.997 5 0.993 6 0.995 3 0.989 7 0.989 5 | 0.983 5 0.981 9 0.980 5 0.979 6 0.981 3 | 0.980 5 0.978 1 0.977 3 0.977 6 0.981 3 | 0.982 0 0.980 0 0.978 9 0.978 6 0.980 7 |
LDAN | Normal DoS Fuzzy GEAR RPM | 0.984 3 0.980 6 0.980 2 0.981 4 0.985 8 | 0.915 5 0.909 9 0.912 4 0.920 1 0.913 5 | 0.978 5 0.975 6 0.971 3 0.976 4 0.980 1 | 0.946 0 0.941 6 0.940 9 0.947 4 0.945 6 |
O-DAE | Normal DoS Fuzzy GEAR RPM | 0.994 5 0.993 3 0.991 2 0.987 9 0.989 5 | 0.980 3 0.974 2 0.987 23 0.965 3 0.968 2 | 0.989 5 0.984 3 0.983 9 0.978 9 0.980 1 | 0.984 9 0.979 2 0.978 1 0.974 2 0.972 1 |
TSP | Normal DoS Fuzzy GEAR RPM | 0.989 5 0.980 2 0.981 1 0.980 0 0.980 3 | 0.913 2 0.910 0 0.912 5 0.902 8 0.918 9 | 0.975 8 0.972 8 0.973 3 0.967 8 0.968 9 | 0.943 5 0.940 4 0.941 9 0.943 2 0.940 7 |
Ours | Normal DoS Fuzzy GEAR RPM | 0.999 8 0.998 7 0.999 2 0.997 9 0.998 5 | 0.996 4 0.995 4 0.994 9 0.994 5 0.995 2 | 0.996 5 0.991 5 0.993 2 0.993 5 0.994 2 | 0.995 5 0.995 8 0.994 0 0.994 2 0.994 7 |
"
类别 | 方法 | Accuracy | Precision | Recall | F1 Score |
---|---|---|---|---|---|
Normal | 基于softmax分类概率 基于不确定度(无校准) 基于不确定度(有校准) | 0.933 4 0.985 6 0.999 8 | 0.967 2 0.979 9 0.996 4 | 0.976 5 0.984 4 0.996 5 | 0.983 0 0.982 2 0.995 5 |
DoS(未知) | 基于softmax分类概率 基于不确定度(无校准) 基于不确定度(有校准) | 0.690 8 0.938 5 0.998 7 | 0.784 5 0.919 3 0.995 4 | 0.736 9 0.927 6 0.991 5 | 0.798 2 0.909 8 0.995 8 |
Fuzzy | 基于softmax分类概率 基于不确定度(无校准) 基于不确定度(有校准) | 0.971 2 0.985 5 0.999 2 | 0.884 1 0.923 4 0.997 9 | 0.836 8 0.965 4 0.994 9 | 0.812 8 0.945 6 0.993 2 |
GEAR | 基于softmax分类概率 基于不确定度(无校准) 基于不确定度(有校准) | 0.993 0 0.994 3 0.997 9 | 0.997 1 0.998 2 0.994 5 | 0.994 3 0.987 2 0.993 5 | 0.994 5 0.996 2 0.994 2 |
RPM | 基于softmax分类概率 基于不确定度(无校准) 基于不确定度(有校准) | 0.996 0 0.997 4 0.998 5 | 0.953 5 0.958 7 0.995 2 | 0.972 5 0.987 4 0.994 2 | 0.983 6 0.981 0 0.994 7 |
"
类别 | 方法 | Accuracy | Precision | Recall | F1 Score |
---|---|---|---|---|---|
DoS(未知) | 基于softmax分类概率 基于不确定度(Ours) | 0.690 8 0.998 7 | 0.784 5 0.995 4 | 0.736 9 0.991 5 | 0.798 2 0.995 8 |
Fuzzy(未知) | 基于softmax分类概率 基于不确定度(Ours) | 0.731 2 0.998 1 | 0.682 4 0.997 9 | 0.624 9 0.994 9 | 0.712 2 0.993 2 |
GEAR(未知) | 基于softmax分类概率 基于不确定度(Ours) | 0.632 1 0.996 1 | 0.698 2 0.987 1 | 0.714 2 0.992 2 | 0.781 3 0.998 3 |
RPM(未知) | 基于softmax分类概率 基于不确定度(Ours) | 0.652 0 0.994 5 | 0.621 8 0.994 32 | 0.712 2 0.998 1 | 0.703 5 0.995 2 |
1 | JEONG H H, SHEN Y C, JEONG J P, et al. A comprehensive survey on vehicular networking for safe and efficient driving in smart transportation: a focus on systems, protocols, and applications[J]. Vehicular Communications, 2021, 31: 100349. |
2 | ALIWA E, RANA O, PERERA C, et al. Cyberattacks and countermeasures for in-vehicle networks[J]. ACM Computing Surveys (CSUR), 2021, 54(1):1-37. |
3 | 关宇昕,冀浩杰,崔哲,等.智能网联汽车车载CAN网络入侵检测方法综述[J].汽车工程,2023,45(6):922-935. |
GUAN Y X, JI H J, CUI Z, et al. An overview of intrusion detection methods for in-vehicle CAN network of intelligent networked vehicles[J]. Automotive Engineering, 2023,45(6):922-935. | |
4 | AKSU D, AYDIN M A. MGA-IDS: optimal feature subset selection for anomaly detection framework on in-vehicle networks-CAN bus based on genetic algorithm and intrusion detection approach[J]. Computers & Security, 2022, 118: 102717. |
5 | WEI P, WANG B, DAI X, et al. A novel intrusion detection model for the CAN bus packet of in-vehicle network based on attention mechanism and autoencoder[J]. Digital Communications and Networks, 2023, 9(1): 14-21. |
6 | SWESSI D, IDOUDI H. Comparative study of ensemble learning techniques for fuzzy attack detection in in-vehicle networks[C]. International Conference on Advanced Information Networking and Applications. Cham: Springer International Publishing, 2022: 598-610. |
7 | GROZA B, MURVAY P S. Efficient intrusion detection with bloom filtering in controller area networks[J]. IEEE Transactions on Information Forensics and Security, 2018, 14(4): 1037-1051. |
8 | HOANG T N, KIM D. Supervised contrastive ResNet and transfer learning for the in-vehicle intrusion detection system[J]. Expert Systems with Applications, 2024, 238: 122181. |
9 | SUN Y, OCHIAI H, ESAKI H. Intrusion detection with segmented federated learning for large-scale multiple lans[C]. 2020 International Joint Conference on Neural Networks (IJCNN). IEEE, 2020: 1-8. |
10 | MCHERGUI A, MOULAHI T, ZEADALLY S. Survey on artificial intelligence (AI) techniques for vehicular ad-hoc networks (VANETs)[J]. Vehicular Communications, 2022, 34: 100403. |
11 | KIM K, KIM J S, JEONG S, et al. Cybersecurity for autonomous vehicles: review of attacks and defense[J]. Computers & Security, 2021, 103: 102150. |
12 | WU W, LI R, XIE G, et al. A survey of intrusion detection for in-vehicle networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(3): 919-933. |
13 | LIANG J, CHEN J, ZHU Y, et al. A novel Intrusion Detection System for Vehicular Ad Hoc Networks (VANETs) based on differences of traffic flow and position[J]. Applied Soft Computing, 2019, 75: 712-727. |
14 | MUSA U S, CHAKRABORTY S, ABDULLAHI M M, et al. A review on intrusion detection system using machine learning techniques[C]. 2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS). IEEE, 2021: 541-549. |
15 | GAL Y. Uncertainty in deep learning[D]. University of Cambridge, 2016. |
16 | GUO C, PLEISS G, SUN Y, et al. On calibration of modern neural networks[C]. International Conference on Machine Learning. PMLR, 2017: 1321-1330. |
17 | SENSOY M, KAPLAN L, KANDEMIR M. Evidential deep learning to quantify classification uncertainty[J]. Advances in Neural Information Processing Systems, 2018, 31. |
18 | MUKHOTI J, GAL Y. Evaluating bayesian deep learning methods for semantic segmentation[J]. arXiv preprint arXiv:, 2018. |
19 | KRISHNAN R, TICKOO O. Improving model calibration with accuracy versus uncertainty optimization[J]. Advances in Neural Information Processing Systems, 2020, 33: 18237-18248. |
20 | MUKHOTI J, KULHARIA V, SANYAL A, et al. Calibrating deep neural networks using focal loss[J]. Advances in Neural Information Processing Systems, 2020, 33: 15288-15299. |
[1] | Xiang Wang,Pengbo Liu,Jian Zhao,Kefeng Fan,Linhui Li. Research on Data Enhancement Methods of BEGAN-Based Intrusion Detection in Automotive CAN Networks [J]. Automotive Engineering, 2024, 46(8): 1394-1402. |
[2] | Lü Hui,Jiaming Zhang,Xiaoting Huang,Wenbin Shangguan. Reliability Optimization for the Powertrain Mounting System Based on Probability Model and Data-Driven Model [J]. Automotive Engineering, 2024, 46(3): 456-463. |
[3] | Teng Cheng,Hao Ni,Qiang Zhang,Wenchong Wang,Qin Shi. Two-Stage Multimodal Fusion Networks Based on Virtual Point Clouds [J]. Automotive Engineering, 2024, 46(2): 222-229. |
[4] | Qilin Wu,Yuming Lin,Zhengrong Cui,Xiaomin Zhao. Formation Containment Control for Multiple Unmanned Ground Vehicles Based on Hierarchical Constraints [J]. Automotive Engineering, 2023, 45(8): 1333-1342. |
[5] | Yingxiang Cui, Youtong Zhang, Hongqian Wei. An Intrusion Detection System for In-vehicle CAN Network Based on Sample Entropy [J]. Automotive Engineering, 2023, 45(7): 1184-1191. |
[6] | Yuxin Guan,Haojie Ji,Zhe Cui,He Li,Liwen Chen. An Overview of Intrusion Detection Methods for In-Vehicle CAN Network of Intelligent Networked Vehicles [J]. Automotive Engineering, 2023, 45(6): 922-935. |
[7] | Lü Hui,Shunjiang Zhong,Zhencong Li,Yisha Cao,Wenbin Shangguan,Kegang Zhao. Reliability Analysis Method Based on Multidimensional Sub-Parallelepiped Model and Its Application [J]. Automotive Engineering, 2023, 45(6): 1090-1098. |
[8] | Yujie Yao,Yuhui Peng,Zehui Chen,Weikun He,Qing Wu,Wei Huang,Wenqiang Chen. An Improved YOLO Algorithm Supporting Anti-illumination Target Detection [J]. Automotive Engineering, 2023, 45(5): 777-785. |
[9] | Lü Hui,Shuai Jiang,Zhengjun Wei,Yisha Cao. Vibration Characteristic Analysis of Drive Motor Considering Parameter Uncertainty [J]. Automotive Engineering, 2023, 45(5): 845-853. |
[10] | Qin Shi,Yafang Chen,Teng Cheng,Qiang Zhang,Wenchong Wang,Benyi Shi. Unsupervised Monocular Infrared Image Depth Estimation Based on Local Plane Guidance Layer [J]. Automotive Engineering, 2023, 45(12): 2291-2298. |
[11] | Fengchong Lan,Wei Pan,Jiqing Chen. Prediction of Remaining Useful Life of Real-World Vehicle Lithium-Ion Power Battery Based on Aseq2seq-PF [J]. Automotive Engineering, 2023, 45(12): 2348-2356. |
[12] | Shuo Zhang,Xu Cai,Chunmei Zhang,Libo Lan,Xuqi Zhang,Yisong Chen. Life Cycle Assessment Research and Uncertainty Analysis of Hydrogen Fuel Cell Heavy-Duty Commercial Vehicles [J]. Automotive Engineering, 2023, 45(12): 2366-2386. |
[13] | Bingli Zhang,Haoran Qin,Shang Jiang,Jieyu Zheng,Zhenghai Wu. A Method of Vehicle Detection at Night Based on RetinaNet and Optimized Loss Functions [J]. Automotive Engineering, 2021, 43(8): 1195-1202. |
[14] | Zuofeng Pan,Yuwei Deng,Yaodong Hao,Lili Su,Jianghua Deng. Study on Uncertainty of Vehicle Wind Noise Performance Under Dynamic Seal Condition [J]. Automotive Engineering, 2021, 43(11): 1645-1652. |
[15] | Lü Hui, Yang Kun, Yin Hui, Shangguan Wenbin, Yu Dejie. Inherent Characteristic Analysis of Powertrain Mounting SystemBased on Multidimensional Parallelepiped Model [J]. Automotive Engineering, 2020, 42(4): 498-504. |