Automotive Engineering ›› 2024, Vol. 46 ›› Issue (11): 2068-2075.doi: 10.19562/j.chinasae.qcgc.2024.11.013
Previous Articles Next Articles
Chao Tang,Zhixiong Cen,Zhenghan Yin,Hairui Wang,Peiyu Yuan,Zonghong Xie()
Received:
2024-03-29
Revised:
2024-05-11
Online:
2024-11-25
Published:
2024-11-22
Contact:
Zonghong Xie
E-mail:xiezongh@mail.sysu.edu.cn
Chao Tang,Zhixiong Cen,Zhenghan Yin,Hairui Wang,Peiyu Yuan,Zonghong Xie. Design and Validation of a Carbon-Nanotube Film Heating Panel for LiFePO4 Battery[J].Automotive Engineering, 2024, 46(11): 2068-2075.
1 | LIU K, SHI H, LIU B, et al. Research on new energy vehicle market penetration rate based on nested multinominal logit model[J]. World Electric Vehicle Journal, 2021, 12(4): 249. |
2 | KIM J, OH J, LEE H. Review on battery thermal management system for electric vehicles[J]. Applied Thermal Engineering, 2019, 149: 192-212. |
3 | 孙含笑. 储能用磷酸铁锂电池产热分析及其热管理[D]. 秦皇岛: 燕山大学, 2023. |
SUN H X. Thermal analysis and thermal management of lithium iron phosphate battery for energy storage[D]. Qinhuangdao: Yanshan University, 2023. | |
4 | PETZL M, KASPER M, DANZER M A. Lithium plating in a commercial lithium-ion battery-a low-temperature aging study[J]. Journal of Power Sources, 2015, 275: 799-807. |
5 | SENYSHYN A, MÜHLBAUER M J, DOLOTKO O, et al. Low-temperature performance of Li-ion batteries: the behavior of lithiated graphite[J]. Journal of Power Sources, 2015, 282: 235-240. |
6 | FOROOZAN T, SHARIFI-ASL S, SHAHBAZIAN-YASSAR R. Mechanistic understanding of Li dendrites growth by in- situ/operando imaging techniques[J]. Journal of Power Sources, 2020, 461: 228135. |
7 | XIONG R, PAN Y, SHEN W, et al. Lithium-ion battery aging mechanisms and diagnosis method for automotive applications: recent advances and perspectives[J]. Renewable and Sustainable Energy Reviews, 2020, 131: 110048. |
8 | LIN C, KONG W, TIAN Y, et al. Heating lithium-ion batteries at low temperatures for onboard applications: recent progress, challenges and prospects[J]. Automotive Innovation, 2022, 5(1): 3-17. |
9 | KALOGIANNIS T, JAGUEMONT J, OMAR N, et al. A comparison of internal and external preheat methods for NMC batteries[J]. World Electric Vehicle Journal, 2019, 10(2): 18. |
10 | TIAN Y, LIN C, LI H, et al. Detecting undesired lithium plating on anodes for lithium-ion batteries-a review on the in-situ methods[J]. Applied Energy, 2021, 300: 117386. |
11 | XIONG R, LI Z, YANG R, et al. Fast self-heating battery with anti-aging awareness for freezing climates application[J]. Applied Energy, 2022, 324: 119762. |
12 | CAI F, CHANG H, YANG Z, et al. A rapid self-heating strategy of lithium-ion battery at low temperatures based on bidirectional pulse current without external power[J]. Journal of Power Sources, 2022, 549: 232138. |
13 | JI Y, WANG C Y. Heating strategies for Li-ion batteries operated from subzero temperatures[J]. Electrochimica Acta, 2013, 107: 664-674. |
14 | WANG T, TSENG K J, ZHAO J. Development of efficient air-cooling strategies for lithium-ion battery module based on empirical heat source model[J]. Applied Thermal Engineering, 2015, 90: 521-529. |
15 | LIU Y, ZHANG J. Design a J-type air-based battery thermal management system through surrogate-based optimization[J]. Applied Energy, 2019, 252: 113426. |
16 | KANG H S, SIM S, SHIN Y H. A numerical study on the light-weight design of PTC heater for an electric vehicle heating system[J]. Energies, 2018, 11(5): 1276. |
17 | 谢宗蕻, 袁培毓, 唐超, 等. 一种加热器及其制备方法和应用: CN 202211250513.9 [P]. 2022-11-11. |
XIE Z H, YUAN P Y, TANG C, et al. A heating element and a method of manufacturing and applications: CN 202211250513.9 [P]. 2022-11-11. | |
18 | JAGUEMONT J, BOULON L, DUBÉ Y. A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures[J]. Applied Energy, 2016, 164: 99-114. |
19 | LEI Z, ZHANG C, LI J, et al. Preheating method of lithium-ion batteries in an electric vehicle[J]. Journal of Modern Power Systems and Clean Energy, 2015, 3(2): 289-296. |
20 | 李军求, 吴朴恩, 张承宁. 电动汽车动力电池热管理技术的研究与实现[J]. 汽车工程, 2016, 38(1): 22-27,35. |
LI J Q, WU P E, ZHANG C N. Study and implementation of thermal management technology for the power batteries of electric vehicles[J]. Automotive Engineering, 2016, 38(1): 22-27,35. | |
21 | ZHANG J, SUN F, WANG Z. Heating character of a LiMn2O4 battery pack at low temperature based on PTC and metallic resistance material[J]. Energy Procedia, 2017, 105: 2131-2138. |
22 | 唐超, 谢文俊, 袁培毓, 等. 翼面前缘共形电热除冰功能结构开发与验证[J]. 航空学报, 2023,44(12):427872-427872. |
TANG C, XIE W J, YUAN P Y, et al. Development and verification of a conformal electrothermal deicing functional structure for the leading edge of the airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2023,44(12):427872-427872. | |
23 | VERTUCCIO L, DE SANTIS F, PANTANI R, et al. Effective de-icing skin using graphene-based flexible heater[J]. Composites Part B: Engineering, 2019, 162: 600-610. |
24 | KOSTARAS C, PAVLOU C, KOUTROUMANIS N, et al. Rapid resistive heating in graphene/carbon nanotube hybrid films for De-icing applications[J]. ACS Applied Nano Materials, 2023, 6(7): 5155-5167. |
25 | 叶璐, 邹齐, 张代军, 等. 碳纳米管膜用于碳纤维增强树脂基复合材料的电热固化技术[J]. 科技导报, 2023, 41(9): 51-57. |
YE L, ZHOU Q, ZHANG D J, et al. Carbon fiber reinforced resin matrix composite curing by carbon nanotube film resistance heating [J]. Science & Technology Review, 2023, 41(9): 51-57. | |
26 | JANAS D, KOZIOL K K. Rapid electrothermal response of high-temperature carbon nanotube film heaters[J]. Carbon, 2013, 59: 457-463. |
27 | 王一楠. 基于虚拟仪器的自动化薄膜电阻率测量系统研究[D]. 武汉: 华中科技大学, 2010. |
WANG Y L. Investigation of virtual instrumentation-based automatic thin film resistivity measurement system[D]. Wuhan: Huazhong University of Science and Technology, 2010. |
No related articles found! |