Automotive Engineering ›› 2024, Vol. 46 ›› Issue (2): 366-374.doi: 10.19562/j.chinasae.qcgc.2024.02.019
Liang Liu1(),Ying Zhang1,Chenyang Shi1,Xinhua Zhao1,Xianming Meng2,Zengchang Liu3
Received:
2023-07-25
Revised:
2023-08-23
Online:
2024-02-25
Published:
2024-02-23
Contact:
Liang Liu
E-mail:liuliang_tjut@126.com
Liang Liu,Ying Zhang,Chenyang Shi,Xinhua Zhao,Xianming Meng,Zengchang Liu. Research on Detection Method of Failure Defects of Rivet on Riveted Aluminum Alloy Plates[J].Automotive Engineering, 2024, 46(2): 366-374.
"
标签 | 识别率/% | ||||
---|---|---|---|---|---|
GCDBN | LSTM | GCDBN- LSTM | GCDBN- Bi-LSTM | PSO+GCDBN- Bi-LSTM | |
1 | 100 | 100 | 100 | 100 | 100 |
2 | 90.54 | 81.08 | 100 | 100 | 100 |
3 | 100 | 100 | 96 | 98.67 | 100 |
4 | 95.83 | 51.39 | 95.83 | 95.83 | 100 |
5 | 87.84 | 79.73 | 100 | 100 | 98.65 |
6 | 88 | 100 | 100 | 100 | 100 |
7 | 100 | 55.56 | 95.83 | 95.83 | 100 |
8 | 98.67 | 85.33 | 100 | 100 | 100 |
9 | 100 | 100 | 100 | 100 | 100 |
10 | 88 | 97.33 | 100 | 100 | 100 |
11 | 100 | 100 | 100 | 100 | 100 |
12 | 98.65 | 87.84 | 100 | 100 | 100 |
13 | 100 | 100 | 100 | 100 | 100 |
总识别率 | 96 | 87.87 | 99 | 99.28 | 99.9 |
1 | LI D Z, CHRYSANTHOU A, PATEL I, et al. Self-piercing riveting-a review[J]. International Journal of Advanced Manufacturing Technology, 2017, 92: 1777-1824. |
2 | 岁波, 都东, 常保华, 等. 轻型车身自冲铆连接技术的发展[J]. 汽车工程, 2006, 28(1): 85-89. |
SUI B,DU D,CHANG B H,et al. A review on the development of self-piercing riveting technology for lightweight vehicle body[J]. Automotive Engineering, 2006, 28(1): 85-89. | |
3 | 李永兵, 马运五, 楼铭, 等. 轻量化多材料汽车车身连接技术进展[J]. 机械工程学报, 2016, 52(24): 1-23. |
LI Y B, MA Y W, LOU M, et al. Advances in welding and joining processes of multi-material lightweight car body[J]. Journal of Mechanical Engineering, 2016, 52(24): 1-23. | |
4 | CHERAGHI S H. Effect of variations in the riveting process on the quality of riveted joints[J]. The International Journal of Advanced Manufacturing Technology, 2008, 39(11): 1144-1155. |
5 | ECKSTEIN J, ROOS E, ROLL K, et al. Experimental and numerical investigations to extend the process limits in self-pierce riveting[J]. American Institute of Physics, 2007, 907(1): 279-286. |
6 | LIU F F, LIU S P, ZHANG Q L, et al. Quantitative non-destructive evaluation of drilling defects in SiCf/SiC composites using low-energy X-ray imaging technique[J]. NDT & E International, 2020, 116: 102364. |
7 | LE M, KIM J, KIM S, et al. B-scan ultrasonic testing of rivets in multilayer structures based on short-time Fourier transform analysis[J]. Measurement, 2018, 128: 495-503. |
8 | HE Y Z, LUO F L, PAN M C. Pulsed eddy current technique for defect detection in aircraft riveted structures[J]. NDT & E International, 2010, 43(2): 176-181. |
9 | JANOVEC M, SMETANA M, BUGAJ M. Eddy current array inspection of Zlin 142 fuselage riveted joints[J]. Transportation Research Procedia, 2019, 40: 279-286. |
10 | 武新军, 张卿, 沈功田. 脉冲涡流无损检测技术综述[J]. 仪器仪表学报, 2016, 37(8): 1698-1712. |
WU X J, ZHANG Q, SHEN G T. Review on advances in pulsed eddy current nondestructive testing technology[J]. Chinese Journal of Scientific Instrument, 2016, 37(8): 1698-1712. | |
11 | 胡祥超. 集成涡流无损检测系统设计与关键技术研究[D]. 长沙: 国防科学技术大学, 2012. |
HU X C. Research on key technologies and design of integrated eddy current nondestructive testing system[D]. Changsha: National University of Defense Technology, 2012. | |
12 | FU Y W, LEI M L, LI Z X, et al. Lift-off effect reduction based on the dynamic trajectories of the received-signal fast Fourier transform in pulsed eddy current testing[J]. NDT & E International, 2017(87): 85-92. |
13 | SHAO H D, JIANG H K, ZHANG H Z, et al. Rolling bearing fault feature learning using improved convolutional deep belief network with compressed sensing[J]. Mechanical Systems and Signal Processing, 2018, 100: 743-765. |
14 | YAN Hao, PENG Y M, SHANG W J, et al. Open-circuit fault diagnosis in voltage source inverter for motor drive by using deep neural network[J]. Engineering Applications of Artificial Intelligence, 2023, 120: 105866. |
15 | TERCAN H, MEISEN T. Machine learning and deep learning based predictive quality in manufacturing: a systematic review[J]. Journal of Intelligent Manufacturing, 2022, 33: 1879-1905. |
16 | XIE Q, LU D N, HUANG A Y, et al. RRCNet: rivet region classification network for rivet flush measurement based on 3-D point cloud[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 70: 1-12. |
17 | AMOSOV O S, AMOSOVA S G, IOCHKOV I O. Detection and recognition of manufacturing defects of rivet joints by their video images using deep neural networks[C]. International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon), 2019: 1-4. |
18 | AMOSOV O S, AMOSOVA S G, IOCHKOV I O. Defects detection and recognition in aviation riveted joints by using ultrasonic echo signals of non-destructive testing[J]. IFAC-PapersOnLine, 2021, 54(1): 484-489. |
19 | EBRAHIMKHANLOU A, DUBUC B, SALAMONE S. A generalizable deep learning framework for localizing and characterizing acoustic emission sources in riveted metallic panels[J]. Mechanical Systems and Signal Processing, 2019, 130: 248-272. |
20 | LEE H, GROSSE R, RANGANATH R, et al. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations[C]. Proceedings of the 26th Annual International Conference on Machine Learning, 2009: 609-616. |
21 | SALAKHUTDINOV R, HINTON G. Using deep belief nets to learn covariance kernels for gaussian processes[C]. Proceedings of Advances in Neural Information Processing Systems, 2008, 20: 1249-1256. |
22 | SHAO H D, JIANG H K, ZHANG H Z, et al. Electric locomotive bearing fault diagnosis using a novel convolutional deep belief network[J]. IEEE Transactions on Industrial Electronics, 2018, 65(3): 2727-2736. |
23 | HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. |
[1] | Lei Ma, Shunqing Yang, Huanhuan Wang, Jiachen Zhai, Jianao Xu. Lightweight Object Detection Algorithm Based on Image Saliency Feature Fusion [J]. Automotive Engineering, 2024, 46(1): 84-91. |
[2] | Yingxiang Cui, Youtong Zhang, Hongqian Wei. An Intrusion Detection System for In-vehicle CAN Network Based on Sample Entropy [J]. Automotive Engineering, 2023, 45(7): 1184-1191. |
[3] | Yuxin Guan,Haojie Ji,Zhe Cui,He Li,Liwen Chen. An Overview of Intrusion Detection Methods for In-Vehicle CAN Network of Intelligent Networked Vehicles [J]. Automotive Engineering, 2023, 45(6): 922-935. |
[4] | Long Chen,Chen Yang,Yingfeng Cai,Hai Wang,Yicheng Li. Pedestrian Crossing Intention Prediction Method Based on Multimodal Feature Fusion [J]. Automotive Engineering, 2023, 45(10): 1779-1790. |
[5] | Teng Cheng,Lei Sun,Dengchao Hou,Qin Shi,Junning Zhang,Jiong Chen,He Huang. Multi-level and Multi-modal Target Detection Based on Feature Fusion [J]. Automotive Engineering, 2021, 43(11): 1602-1610. |
[6] | Liu Zhiqiang, Zhang Guanglin, Zheng Yuewen, He Xiaoyu. Multi-Sensor Fusion Method Based on Checking Unscented Information Fusion Algorithm [J]. Automotive Engineering, 2020, 42(7): 854-859. |
[7] | Zhang Yangyang, Jia Yunxian, Wu Weiyi, Su Xiaobo, Shi Xiaowen. Application of Probabilistic Neural Network to Typical Fault Diagnosis of Vehicle Gearbox [J]. Automotive Engineering, 2020, 42(7): 972-977. |
[8] | Chen Wenqiang, Xiong Hui, Li Keqiang, Li Xiaofei& Zhang Dezhao. Concurrent Pedestrian and Cyclist Detection Based on Deep Neural Networks [J]. , 2018, 40(6): 726-. |
|