1 |
禹进,郭川钰,张伟阔,等. 磷酸铁锂电池在储能预制舱中的火灾模拟及其消防应急技术仿真研究[J].高电压技术, 2023, 49(12): 5187-5195.
|
|
YU Jin, GUO Chuanyu, ZHANG Weikuo, et al. Fire accident simulation and fire emergency technology simulation of lithium iron phosphate battery in prefabricated compartment for energy storage power station[J]. High Voltage Engineering, 2023, 49(12): 5187-5195.
|
2 |
芮新宇, 冯旭宁, 韩雪冰,等. 锂离子电池热失控蔓延问题研究综述[J]. 电池工业, 2020, 24(4):193-201.
|
|
RUI Xinyu, FENG Xuning, HAN Xuebing, et al. Review on the thermal runaway propagation of lithium-ion batteries[J]. Chinese Battery Industry, 2020, 24(4): 193-201.
|
3 |
CHEN Mingyi, OUYANG Xudong, LIU Jiahao, et al. Investigation on thermal and fire propagation behaviors of multiple lithiumion batteries within the package[J]. Applied Thermal Engineering,2019,157: 113750.
|
4 |
常润泽, 郑斌, 冯旭宁,等. 隔热层对锂电池模组热失控蔓延特性影响的实验研究[J].汽车工程,2021,43(10):1448-1456.
|
|
CHANG Runze, ZHENG Bin, FENG Xuning, et al. Experimental study on the effects of thermal insulation layers on the propagation characteristics of thermal runaway in lithium⁃ion battery module[J]. Automotive Engineering, 2021,43(10):1448-1456.
|
5 |
FENG Xunning, SUN Jing, OUYANG Minggao, et al. Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module[J]. Journal of Power Sources, 2015: 261-273.
|
6 |
王怀铷, 孙宜听, 金阳. 磷酸铁锂储能电池簇过充热失控蔓延特性仿真研究[J]. 机械工程学报, 2021, 57(14): 32-39.
|
|
WANG Huairu, SUN Yiting, JIN Yang. Simulation study on overcharge thermal runaway propagation of lithium-iron-phosphate energy storage battery clusters[J]. Journal of Mechanical Engineering, 2021, 57(14): 32-39.
|
7 |
SONG Laifeng, HUANG Zonghou, MEI Wenxin, et al. Thermal runaway propagation behavior and energy flow distribution analysis of 280 Ah LiFePO4 battery[J]. Process Safety and Environmental Protection, 2023, 170: 1066-1078.
|
8 |
LAI Xin, WANG Shuyu, WANG Huaibin, et al. Investigation of thermal runaway propagation characteristics of lithium-ion battery modules under different trigger modes[J]. International Journal of Heat and Mass Transfer, 2021, 171:121080.
|
9 |
SUN T, WANG L, REN D, et al. Thermal runaway characteristics and modeling of LiFePO4 power battery for electric vehicles[J]. Automot. Innov, 2023, 6: 414-424 .
|
10 |
LI Huang, DUAN Qiangling, ZHAO Chunpeng, et al. Experimental investigation on the thermal runaway and its propagation in the large format battery module with Li(Ni1/3Co1/3Mn1/3)O2 as cathode[J]. Journal of Hazardous Materials, 2019, 375: 241-254.
|
11 |
JIA Zhuangzhuang, HUANG Zonghou, ZHAI Hongju, et al. Experimental investigation on thermal runaway propagation of 18650 lithium-ion battery modules with two cathode materials at low pressure[J]. Energy, 2022, 251: 123925.
|
12 |
JIA Yikai, UDDIN M, LI Yangxing, et al. Thermal runaway propagation behavior within 18650 lithium-ion battery packs: a modeling study[J]. Journal of Energy Storage, 2022, 31: 101668.
|
13 |
ZHAI Hongju, LI Huang, PING Ping, et al. An experimental-based Domino prediction model of thermal runaway propagation in 18650 lithium-ion battery modules[J]. International Journal of Heat and Mass Transfer, 2021, 181: 122024.
|
14 |
WANG Huaibin, LIU Bo, XU Chengshan, et al. Dynamic thermophysical modeling of thermal runaway propagation and parametric sensitivity analysis for large format lithium-ion battery modules[J]. Journal of Power Sources, 2022, 520: 230724.
|
15 |
WANG Huaibin, WANG Qinzheng, ZHAO Zhenyang, et al. Thermal runaway propagation behavior of the Cell-to-Pack battery system[J]. Journal of Energy Chemistry, 2023, 84: 162-172.
|
16 |
董远夏, 张恒运, 朱佳俊,等. 车用电池模组热蔓延防护结构的数值仿真研究[J]. 储能科学与技术, 2022, 11(5): 1608-1616.
|
|
DONG Yuanxia, ZHANG Hengyun, ZHU Jiajun, et al. Numerical simulation study on thermal runaway propagation mitigation structure of automotive battery module[J]. Energy Storage Science and Technology, 2022, 11(5): 1608-1616.
|
17 |
ZHANG Yue, MEI Wenxin, QIN Peng, et al. Numerical modeling on thermal runaway triggered by local overheating for lithium iron phosphate battery[J]. Applied Thermal Engineering, 2021, 192: 116928.
|
18 |
FENG Xunning, LU Languang, OUYANG Minggao, et al. A 3D thermal runaway propagation model for a large format lithium ion battery module[J]. Energy, 2016, 115: 194-208.
|
19 |
HOELLE S, ZIMMERMANN S, et al. 3D thermal simulation of thermal runaway propagation in lithium-ion battery cell stack: review and comparison of modeling approaches[J]. Journal of The Electrochemical Society, 2023, 170: 060516.
|
20 |
HOELLE S, DENGLER F, et al. 3D thermal simulation of lithium-ion battery thermal runaway in autoclave calorimetry: development and comparison of modeling approaches[J]. Journal of The Electrochemical Society, 2023, 170: 010509.
|
21 |
张青松, 曹文杰, 罗星娜,等. 基于多米诺效应的锂离子电池热释放速率分析方法[J]. 北京航空航天大学学报, 2017, 43(5): 902-907.
|
|
ZHANG Qingsong, CAO Wenjie, LUO Xingna, et al. Analysis method of heat release rate of lithium-ion battery based on domino effect[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(5): 902-907.
|
22 |
COMAN P T, DARCY E C, et al. Simplified thermal runaway model for assisting the design of a novel safe Li-Ion battery pack[J]. Journal of The Electrochemical Society, 2022, 169: 040516.
|
23 |
LIU Quanyi, ZHU Qian, ZHU Wentian, et al. Influence of aerogel felt with different thickness on thermal runaway propagation of 18650 lithium-ion battery[J]. Electrochemistry, 2022, 90: 087003.
|
24 |
WANG Qingsong, QIN Peng, DUAN Qiangling, et al. A method for analyzing the heat generation rate of cylindrical lithium-ion batteries: China, 10545267. 9[P]. 2021-07-30.
|