| 1 |
JIANG K, LING F, FENG Z, et al. Why do drivers continue driving while fatigued? an application of the theory of planned behaviour[J]. Transportation Research Part A: Policy and Practice, 2017, 98: 141-149.
|
| 2 |
ZHANG X, WANG X, YANG X, et al. Driver drowsiness detection using mixed-effect ordered logit model considering time cumulative effect[J]. Analytic Methods in Accident Research, 2020, 26: 100114.
|
| 3 |
周继红,杨傲,袁丹凤,等.疲劳驾驶及其评估方法进展[J].伤害医学(电子版), 2021, 10(3):45-50.
|
|
ZHOU J, YANG A, YUAN D, et al. Fatigue driving and evaluation methods[J]. Injury Medicine (Electronic Edition), 2021, 10(3):45-50.
|
| 4 |
LI Z, CHEN L, NIE L, et al. A novel learning model of driver fatigue features representation for steering wheel angle[J]. IEEE Transactions on Vehicular Technology, 2022, 71:269-281.
|
| 5 |
WANG Y, JIN L, LI K, et al. Drowsy driving detection based on fused data and information granulation[J]. IEEE Access, 2019, 7: 183739-183750.
|
| 6 |
SUN Z, MIAO Y, JEON J Y, et al. Facial feature fusion convolutional neural network for driver fatigue detection[J]. Engineering Applications of Artificial Intelligence, 2023, 126: 106981.
|
| 7 |
YI Y, ZHOU Z, ZHANG W, et al. Fatigue detection algorithm based on eye multifeature fusion[J]. IEEE Sensors Journal, 2023, 23(7): 7949-7955.
|
| 8 |
MATEUSZ K, BOGUSLAW C. Driver’s fatigue recognition based on yawn detection in thermal images[J]. Neurocomputing, 2019, 338: 274-292.
|
| 9 |
LIU Y, XIANG Z, YAN Z, et al. CEEMDAN fuzzy entropy based fatigue driving detection using single-channel EEG[J]. Biomedical Signal Processing and Control, 2024, 95:106460.
|
| 10 |
SUN W, JIANG W, LI C, et al. Study on identification method of driver fatigue considering individual ECG differences[J]. Cognition, Technology & Work, 2024, 26(2):301-312.
|
| 11 |
LU J, ZHENG X, ZHANG T, et al. Can steering wheel detect your driving fatigue?[J]. IEEE Transactions on Vehicular Technology, 2021, 70(6): 5537-5550.
|
| 12 |
王琳, 罗旭, 姜鑫, 等. 基于生物力学和颈腰部EMG判别驾驶员疲劳状态[J]. 汽车工程, 2017, 39(8): 955-960,967.
|
|
WANG L, LUO X, JIANG X, et al. Detection on driver fatigue based on biomechanics and EMG of cervical and lumbar muscles[J]. Automotive Engineering, 2017, 39(8): 955-960,967.
|
| 13 |
杨巨成, 魏峰, 林亮, 等. 驾驶员疲劳驾驶检测研究综述[J]. 山东大学学报(工学版), 2024, 54(2): 1-12.
|
|
YANG J, WEI F, LIN L, et al. A research survey of driver drowsiness driving detection[J]. Journal of Shandong University (Engineering Science), 2024, 54(2): 1-12.
|
| 14 |
苏瑞芝, 唐巾卜, 阿地力·吐合提, 等. 基于生理参数的驾驶疲劳检测方法综述[J]. 复旦学报(自然科学版), 2023, 62(4): 419-427.
|
|
SU R, TANG J, ADILI T, et al. A review of physiological signals-based driving fatigue detection algorithms[J]. Journal of Fudan University (Natural Science), 2023, 62(4): 419-427.
|
| 15 |
SUN J, LIU G, SUN Y, et al. Application of surface electromyography in exercise fatigue: a review[J]. Frontiers in Systems Neuroscience, 2022, 16: 893275.
|
| 16 |
NA L, RUI Z, BHARATH K, et al. Non-invasive techniques for muscle fatigue monitoring: a comprehensive survey [J]. ACM Computing Surveys, 2024, 56(9): 40.
|
| 17 |
ZHANG C, WANG H, FU R. Automated detection of driver fatigue based on entropy and complexity measures[J]. IEEE Transactions on Intelligent Transportation System, 2014,15(1):168-177.
|
| 18 |
FU R, WANG H, ZHAO W. Dynamic driver fatigue detection using hidden Markov model in real driving condition[J]. Expert Systems with Applications, 2016, 63:397-411.
|
| 19 |
WANG L, WANG H, LIU J. Discrimination of driver fatigue based on distortion energy density theory and multiple physiological signals[J]. IEEE Access, 2021, 9:151824-151833.
|
| 20 |
王琳, 张陈, 尹晓伟, 等. 一种基于驾驶员生理信号的非接触式驾驶疲劳检测技术[J]. 汽车工程, 2018, 40 (3): 333-341.
|
|
WANG L, ZHANG C, YIN X, et al. A non-contact driving fatigue detection technique based on driver’s physiological signals[J]. Automotive Engineering, 2018, 40 (3): 333-341.
|
| 21 |
FRASIE A, BERTRAND-CHARETTE M, COMPAGNAT M, et al. Validation of the Borg CR10 Scale for the evaluation of shoulder perceived fatigue during work-related tasks[J]. Applied Ergonomics, 2024, 116: 104200.
|
| 22 |
ZHOU Q, CHEN Y, MA C, et al. Evaluation of upper limb muscle fatigue based on surface electromyography[J]. Science China Life Sciences, 2011,54:939-944.
|
| 23 |
董洋, 王琳, 张娜娜, 等. 基于变分模态分解与小波阈值结合的表面肌电信号去噪分析与研究[J]. 沈阳工程学院学报(自然科学版), 2023, 19(2): 79-84.
|
|
DONG Y, WANG L, ZHANG N, et al. Analysis and study of SEMG based on variational mode decomposition and wavelet threshod[J]. Journal of Shenyang Institute of Engineering (Natural Science), 2023, 19(2): 79-84.
|
| 24 |
QIN P, SHI X. Evaluation of feature extraction and classification for lower limb motion based on sEMG signal[J]. Entropy, 2020, 22(8): 852.
|
| 25 |
曹昂, 张珅嘉, 刘睿, 等. 基于表面肌电信号的肌肉疲劳状态分类系统[J]. 计算机应用, 2018, 38(6): 1801-1808.
|
|
CAO A, ZHANG S, LIU R, et al. Muscle fatigue state classification system based on surface electromyography signal[J]. Journal of Computer Applications, 2018, 38(6): 1801-1808.
|
| 26 |
MIRIALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67.
|