Automotive Engineering ›› 2024, Vol. 46 ›› Issue (11): 1983-1992.doi: 10.19562/j.chinasae.qcgc.2024.11.005
Previous Articles Next Articles
Hang Sun1,Yuran Li1(),Linlin Zhang1,Yang Zhai2,Zhenyu Chen1,Chen Chen2
Received:
2023-02-15
Revised:
2024-06-16
Online:
2024-11-25
Published:
2024-11-22
Contact:
Yuran Li
E-mail:liyuran@catarc.ac.cn
Hang Sun,Yuran Li,Linlin Zhang,Yang Zhai,Zhenyu Chen,Chen Chen. Scenario Complexity Calculation Model of Real Road Test Based on Operational Design Condition[J].Automotive Engineering, 2024, 46(11): 1983-1992.
"
场景要素 | 要素编号 | 场景要素 | 数据类型 |
---|---|---|---|
Category 1 道路等级 | 1 | 车道数量 | 数值型 |
2 | 车道坡度 | 数值型 | |
3 | 车道曲率 | 数值型 | |
Category 2 交通设施 | 4 | 信号灯 | 布尔型 |
5 | 交通标志 | 布尔型 | |
6 | 交通标线 | 布尔型 | |
7 | 分隔带 | 布尔型 | |
8 | 道闸 | 布尔型 | |
Category 3 临时交通变化 | 9 | 临时交通标志 | 布尔型 |
10 | 临时信号灯 | 布尔型 | |
11 | 障碍物 | 布尔型 | |
12 | 特殊路面 | 布尔型 | |
Category 4 交通参与者 | 13 | 目标数量 | 数值型 |
14 | 目标类型 | 数值型 | |
15 | 目标状态 | 数值型 | |
Category 5 自然环境 | 16 | 雨 | 布尔型 |
17 | 雪 | 布尔型 | |
18 | 雾 | 布尔型 | |
19 | PM 2.5 | 数值型 | |
20 | 光照度 | 数值型 | |
21 | 光干扰 | 布尔型 | |
Category 6 网联信息 | 22 | 位置信号 | 布尔型 |
23 | 蜂窝网络信号 | 数值型 | |
24 | V2X信号 | 数值型 | |
Category 7 驾驶员状态 | 25 | 嗜睡 | 布尔型 |
Category 8 本车状态 | 26 | 本车加速度 | 数值型 |
27 | 本车转向角速度 | 数值型 | |
28 | 本车车速 | 数值型 |
"
要素分类 | 要素名称 | 标度 | 归一化 特征向量 | 权重 系数 |
---|---|---|---|---|
Category 1 道路等级 | 车道数量 | 4 | 0.267 | 0.035 |
车道坡度 | 6 | 0.400 | 0.053 | |
车道曲率 | 5 | 0.333 | 0.044 | |
Category 2 交通设施 | 信号灯 | 3 | 0.176 | 0.027 |
交通标志 | 3 | 0.176 | 0.027 | |
交通标线 | 3 | 0.176 | 0.027 | |
分隔带 | 4 | 0.235 | 0.035 | |
道闸 | 4 | 0.235 | 0.035 | |
Category 3 临时交通变化 | 临时交通标志 | 3 | 0.176 | 0.027 |
临时信号灯 | 3 | 0.176 | 0.027 | |
障碍物 | 6 | 0.353 | 0.053 | |
特殊路面 | 5 | 0.294 | 0.044 | |
Category 4 交通参与者 | 目标数量 | 4 | 0.267 | 0.035 |
目标类型 | 4 | 0.267 | 0.035 | |
目标状态 | 7 | 0.467 | 0.062 | |
Category 5 自然环境 | 雨 | 5 | 0.208 | 0.044 |
雪 | 5 | 0.208 | 0.044 | |
雾 | 4 | 0.167 | 0.035 | |
PM 2.5 | 4 | 0.167 | 0.035 | |
光照度 | 4 | 0.167 | 0.035 | |
光干扰 | 2 | 0.083 | 0.018 | |
Category 6 网联信息 | 位置信号 | 3 | 0.231 | 0.027 |
蜂窝网络信号 | 5 | 0.385 | 0.044 | |
V2X信号 | 5 | 0.385 | 0.044 | |
Category 7 驾驶员状态 | 嗜睡 | 5 | 1.000 | 0.044 |
Category 8 本车状态 | 本车加速度 | 2 | 0.286 | 0.018 |
本车转向角速度 | 2 | 0.286 | 0.018 | |
本车车速 | 3 | 0.429 | 0.027 |
1 | Working Party on Automated/Autonomous and Connected Vehicles. Proposal for a second iteration of the new assessment/test method for automated driving-master document [Informal Document] [Z]. United Nations, 2022. |
2 | 刘法旺,徐晓庆,陈贞,等. 搭载自动驾驶功能的智能网联汽车安全测试与评估方法研究[J].汽车工程学报, 2022, 12(3): 221-227. |
LIU F W, XU X Q, CHEN Z, et al. Research on safety testing and assessment methods for intelligent and connected vehicles with autonomous driving functions[J]. Chinese Journal of Automotive Engineering, 2022, 12(3): 221-227. | |
3 | HERMAN W. Automated vehicle symposium San Francisco[C]. San Francisco: FZD, 2016. |
4 | Euro NCAP, 2018a. European new car assessment programme (Euro NCAP)--test protocol AEB VRU systems. retrieved 389. [EB/OL]. https://cdn.euroncap.com/November 2018.Version 1.1-with Appendices. |
5 | BRÜHNING B, et al. Code of practice for evaluation of road traffic accidents[M]. Berlin: German Insurance Association, 2006. |
6 | PEGASUS. Scenario description and knowledge-based scenario generation [EB/OL]. [2021-4-25]. https://www. pegasusprojekt.de. |
7 | SCHOLTES M,WESTHOFEN L,TURNER L R,et al.6-Layer model for a structured description and categorization of urban traffic and environment [J]. IEEE Access, 2021, 2: 1-16. |
8 | WASSIM G N, DAVID L S. Definition of a pre-crash scenario typology for vehicle safety research[J].NHTSA, 2017, 07-0412. |
9 | 李建斌,李海滨,盛燕萍.交通环境因素对道路安全影响的定量评价[J]. 路基工程, 2009(3): 96-97. |
LI J B, LI H B, SHENG Y P. Quantitative assessment of impact of traffic environmental factor on road safety[J]. Subgrade Engineering, 2009(3): 96-97. | |
10 | 李平飞,王咪杨,车瑶栎,等. 基于车-车事故的道路测试场景风险评价方法[J].交通工程, 2022, 22(3): 88-96. |
LI P F, WANG M Y, CHE Y Y, et al. Risk assessment method of road test scenario based on vehicle-to-vehicle crashes[J]. Journal of Transportation Engineering, 2022, 22(3): 88-96. | |
11 | 王荣,孙亚夫,宋娟. 自动驾驶车辆道路测试场景评价方法与试验验证[J].汽车工程, 2021, 43(4): 620-628. |
WANG R,SUN Y F, SONG J. Evaluation method and test verification of road test scenes for autonomous vehicles[J]. Automotive Engineering, 2021, 43(4): 620-628. | |
12 | 庞智恒,唐春蓬,李光平. 预期功能安全场景库复杂度量化方法研究[J]. 汽车工程学报,2022,12(1): 12-17. |
PANG Z H, TANG C P, LI G P. A complexity quantification method for safety of the intended functionality scenario library [J]. Chinese Journal of Automotive Engineering,2022,12(1):12-17. | |
13 | 董汉,舒伟,陈超,等.危险驾驶工况场景的复杂度评估方法研究[J]. 汽车工程, 2020, 42(6): 808-814. |
DONG H, SHU W, CHEN C, et al. Research on complexity evaluation method of dangerous driving scenes[J].Automotive Engineering, 2020,42(6): 808-814. | |
14 | 朱波,胡旭东,谈东奎,等.基于多通道态势图的自动驾驶场景表征方法[J]. 中国公路学报, 2020, 33(8): 204-214. |
ZHU B, HU X D, TAN D K, et al. Automatic driving scenario representation based on multi-channel situation map[J]. China Journal of Highway and Transport, 2020, 33(8): 204-214. | |
15 | ZHANG Y F, ZHAI Y, SUN B H, et al. Research on the safety boundary evaluation method of scenarios for automated vehicles[C]. 2022 IEEE 4th International Conference on Power, Intelligent Computing and Systems (ICPICS), Shenyang, China, 2022: 360-365. |
16 | LI L, WANG X, WANG K, et al. Parallel testing of vehicle intelligence via virtual-real interaction[J]. Science, 2019, 4(28): 4106. |
17 | ZHOU J, RE L D. Reduced complexity safety testing for ADAS & ADF[C]. IFAC World Congress, 2017. |
18 | CHEN W, MO H, ZHOU C, et al. Evaluation of intelligent vehicle safety based on ahp and fuzzy comprehensive evaluation[C]. 2020 International Conference on System Science and Engineering(ICSSE), Kagawa, Japan, 2020: 1-6. |
19 | LIU M, ZHOU J, ZENG L, et al. Study on test and evaluation method of autonomous driving vehicle at intersection[C]. Advances in Transdisciplinary Engineering, 2022: 948-957. |
20 | ULBRICH S,MENZEL T,RESCHKA A,et al. Defining and substantiating the terms scene,situation,and scenario for automated driving[C]. IEEE 18th International Conference on Intelligent Transportation Systems, Gran Canaria, Spain, Sept.15-18, 2015: 1-7. |
21 | 刘峰涛,贺国光. 基于近似熵和统计复杂度的交通流复杂性测度[J]. 中国公路学报,2007,20(4): 108-112. |
LIU F T,HE G G. Complexity measure of traffic flow based on approximate entropy and statistical complexity[J]. China Journal of Highway and Transport, 2007, 20(4): 108-112. | |
22 | LEE K, PENG H. Evaluation of automotive forward collision warning and collision avoidance algorithms[J]. Vehicle System Dynamics, 2005, 43(10): 735. |
23 | WANG X,QIN D,CAFISO S,et al. Operational design domain of autonomous vehicles at skewed intersection[J]. Accident Analysis and Prevention, 2021, 159: 106241. |
24 | 孙航, 张行, 张淼,等. 自动驾驶系统设计运行条件构建方法的研究[J]. 中国汽车, 2020, 12(9): 41-49. |
SUN H, ZHANG H, ZHANG M, et al. Research on the construction method of operational design condition of intelligent and connected vehicle[J]. China Auto, 2020, 12(9): 41-49. | |
25 | 孙航,李志军,张琳琳,等. 基于OEDR和ODC的自动驾驶汽车实际道路测试评价技术研究[J].汽车工程, 2022, 44(6): 842-850. |
SUN H, LI Z J, ZHANG L L, et al. Research on the test and evaluation technique of real roads for automated driving vehicles based on OEDR and ODC[J]. Automotive Engineering, 2022, 44 (6): 842-850. | |
26 | SUN J, ZHOU H, XI H, et al. Adaptive design of experiments for safety evaluation of automated vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(9): 14497-14508. |
27 | 李江坤,邓伟文,任秉韬,等. 一种智能汽车测试场景复杂度的评估方法[C]. 中国汽车工程学会年会论文集, 2020: 106-113. |
LI J K, DENG W W, REN B T, et al. An evaluation method of test scenario complexity for intelligent vehicles[C]. SAECCE,2020: 106-113. |
[1] | Daofei Li,Hao Pan. Application of Scenario Complexity Evaluation in Trajectory Prediction and Automated Driving Decision-Making [J]. Automotive Engineering, 2024, 46(9): 1556-1563. |
[2] | Bing Zhu,Tianxin Fan,Jian Zhao,Peixing Zhang,Dongjian Song,Yue Xue,Wenbo Zhao. Generation Method for Anthropomorphic Continuous Interactive Test Scenarios of Automated Driving [J]. Automotive Engineering, 2024, 46(9): 1600-1607. |
[3] | Xinzheng Wu,Xingyu Xing,Lihao Liu,Yong Shen,Junyi Chen. Testing and Analysis of the Robustness of Decision-Making and Planning Systems Based on Fault Injection [J]. Automotive Engineering, 2023, 45(8): 1428-1437. |
[4] | Yanli Ma,Jun Lu,Jieyu Zhu,Xiaoxue Han. Take-over Performance Prediction Under Different Cognitive Loads of Non-driving Tasks in Highly Automated Driving [J]. Automotive Engineering, 2023, 45(12): 2330-2337. |
[5] | Hang Sun,Zhijun Li,Linlin Zhang,Zhenyu Chen,Shilong Li. Research on the Test and Evaluation Technique of Real Roads for Automated Driving Vehicles Based on OEDR and ODC [J]. Automotive Engineering, 2022, 44(6): 842-850. |
[6] | Peixing Zhang,Bin Qiu,Bing Zhu,Jian Zhao,Yuhang Sun,Tianxin Fan. Study on Parallel Accelerated Testing Method for Automated Driving System [J]. Automotive Engineering, 2022, 44(2): 208-214. |
[7] | Guangquan Lu,Facheng Chen,Penghui Li,Junda Zhai,Haitian Tan,Pengyun Zhao. Effect of Drivers’ Acceptance Level of Car⁃following Risk on the Takeover Performance [J]. Automotive Engineering, 2021, 43(6): 808-814. |
[8] | Lin Qingfeng, Wang Zhaojie, Lu Guangquan. Takeover Safety Evaluation Model for Level 3 Automated Vehicles [J]. Automotive Engineering, 2019, 41(11): 1258-1264. |