1 |
朱冰, 张培兴, 赵健, 等. 基于场景的自动驾驶汽车虚拟测试研究进展[J]. 中国公路学报, 2019, 32(60): 1-19.
|
|
ZHU B, ZHANG P X, ZHAO J, et al. Review of scenario-based virtual validation methods for automated vehicles[J]. China Journal of Highway and Transport, 2019, 32(60): 1-19.
|
2 |
LIU M, OUYANG X, LU R, et al. An evaluation method for automotive technical and comprehensive performance[J]. Automotive Innovation, 2023, 6: 231-243.
|
3 |
徐向阳,胡文浩,董红磊,等.自动驾驶汽车测试场景构建关键技术综述[J].汽车工程,2021,43(4): 610-619.
|
|
XU X, HU W, DONG H, et al. Review of key technologies for autonomous vehicle test scenario construction[J]. Automotive Engineering, 2021,43(4): 610-619.
|
4 |
ZHAO S, DUAN J, WU S, et al. Genetic algorithm-based sotif scenario construction for complex traffic flow[J]. Automotive Innovation, 2023,6: 531-546.
|
5 |
蒋渊德,朱冰,赵祥模,等.面向自动驾驶汽车测试的交通车辆交互过程建模[J].汽车工程,2022,44(12):1825-1833.
|
|
JIANG Y D, ZHU B, ZHAO X M, et al. Modeling of traffic vehicle interaction for autonomous vehicle testing[J]. Automotive Engineering, 2022,44(12):1825-1833.
|
6 |
郭景华,李克强,王进,等.基于危险场景聚类分析的前车随机运动状态预测研究[J].汽车工程, 2020,42(7):847-853,859.
|
|
GUO J H, LI K Q, WANG J, et al. Study on prediction of preceding vehicle's stochastic motion based on risk scenarios clustering analysis[J]. Automotive Engineering, 2020,42(7):847-853,859.
|
7 |
李江坤, 邓伟文, 任秉韬, 等. 基于场景动力学和强化学习的自动驾驶边缘测试场景生成方法[J]. 汽车工程, 2022, 44(7): 976-986.
|
|
LI J K, DENG W W, REN B T, et al. Automatic driving edge scene generation method based on scene dynamics and reinforcement learning[J]. Automotive Engineering, 2022, 44(7): 976-986.
|
8 |
FENG S, SUN H, YAN X, et al. Dense reinforcement learning for safety validation of autonomous vehicles[J]. Nature, 2023, 615: 620-627.
|
9 |
RODRIGO Q, DIVIT S, RICARDO C, et al. A driver-vehicle model for ADS scenario-based testing[J]. IEEE Transactions on Intelligent Transportation Systems, 2024,25(8): 8641-8654.
|
10 |
潘春燕. 基于自然交通流生成的自动驾驶车辆测试评价研究[D]. 长春:吉林大学, 2022.
|
|
PAN C Y. Research on test and evaluation of autonomous vehicles based on natural traffic flow generation[D]. Changchun: Jilin University, 2022.
|
11 |
王博洋, 龚建伟, 张瑞增, 等. 基于真实驾驶数据的运动基元提取与再生成[J]. 机械工程学报, 2020,56(16):155-165.
|
|
WANG B Y, GONG J W, ZHANG R Z, et al. Motion primitives extraction and regeneration based on real driving data [J]. Journal of Mechanical Engineering, 2020,56(16):155-165.
|
12 |
TAN Y, YANG Y, REN H, et al. Survey on traffic flow-based autonomous driving simulation tests[C]. 2023 IEEE 32nd Asian Test Symposium, New York: IEEE, 2023:100-105.
|
13 |
刘宇翔. 基于驾驶行为基元的换道风格分类方法研究[D]. 长春:吉林大学, 2024.
|
|
LIU Y X. Research on the lane-changing style classification method based on driving behavior primitives[D]. Changchun: Jilin University, 2024.
|
14 |
万志成, 郑静. 基于狄利克雷过程高斯混合模型的变分推断[J]. 杭州电子科技大学学报(自然科学版), 2011, 41(5): 54-61.
|
|
WAN Z C, ZHENG J. Variational inference for gaussian mixture model based on dirichlet process[J]. Journal of Hangzhou Dianzi University(Natural Sciences), 2011, 41(5): 54-61.
|
15 |
BENDER A, AGAMENNONI G, WARD J, et al. An unsupervised approach for inferring driver behavior from naturalistic driving data[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(6): 3325-3336.
|
16 |
XU P, ZHU X, CLIFTON D. Multimodal learning with transformers: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(10): 12113-12132.
|