Automotive Engineering ›› 2024, Vol. 46 ›› Issue (3): 396-406.doi: 10.19562/j.chinasae.qcgc.2024.03.003
Yiwei Zhou1,2,Mo Xia1,Bing Zhu3()
Received:
2023-08-13
Revised:
2023-11-22
Online:
2024-03-25
Published:
2024-03-18
Contact:
Bing Zhu
E-mail:zhubing@jlu.edu.cn
Yiwei Zhou,Mo Xia,Bing Zhu. Multimodal Vehicle Trajectory Prediction Methods Considering Multiple Traffic Participants in Urban Road Scenarios[J].Automotive Engineering, 2024, 46(3): 396-406.
1 | YURTSEVER E, LAMBERT J, CARBALLO A, et al. A survey of autonomous driving: common practices and emerging technologies[J]. IEEE Access, 2019, 8: 58443-58469. |
2 | 段续庭, 周宇康, 田大新, 等. 深度学习在自动驾驶领域应用综述[J]. 无人系统技术, 2021, 4(6): 1-27. |
DUAN X T, ZHOU Y K, TIAN D X, et al. A review of deep learning applications for autonomous driving[J]. Unmanned Systems Technology, 2021, 4(6): 1-27. | |
3 | TONG Y, LI C, WANG G, et al. Lntegrated path-following and fault-tolerant control for four-wheel lndependent-driving electric vehicles[J]. Automotive Innovation, 2022, 5(3): 311-323. |
4 | LIANG Y, LI Y, YU Y, et al. Path-following control of autonomous vehicles considering coupling effects and multi-source system uncertainties[J]. Automotive Innovation, 2021,4(3): 284-300. |
5 | ZHANG P, ZHU B, ZHAO J, et al. Performance evaluation method for automated driving system in logical scenario[J]. Automotive Innovation, 2022, 5(3): 299-310. |
6 | HOSS M, SCHOLTES M, ECKSTEIN L. A review of testing object-based environment perception for safe automated driving[J]. Automotive Innovation, 2022, 5: 223-250. |
7 | 黄峻, 田永林, 戴星原, 等. 基于深度学习的自动驾驶多模态轨迹预测方法:现状及展望[J]. 智能科学与技术学报, 2023, 5(2): 180-199. |
HUANG J, TIAN Y L, DAI X Y, et al. Deep learning-based multimodal trajectory prediction methods for autonomous driving: state of the art and perspectives[J]. Chinese Journal of Intelligent Science and Technology, 2023, 5(2): 180-199. | |
8 | 陈瑞祥, 刘金广, 朱新宇. 面向城市交通组织的交通参与者行为特征差异研究[J]. 交通工程, 2022, 22(3): 52-58,76. |
CHEN R X, LIU J G, ZHU X Y. Differences in behavior characteristics of traffic participants for urban traffic organization[J]. Journal of Transportation Engineering, 2022, 22(3): 52-58,76. | |
9 | PARK S, KIM B, KANG C M, et al. Sequence-to-sequence prediction of vehicle trajectory via lstm encoder-decoder architecture[C]. 2018 IEEE Intelligent Vehicles Symposium, 2018: 1672-1678. |
10 | 季学武, 费聪, 何祥坤, 等. 基于LSTM网络的驾驶意图识别及车辆轨迹预测[J]. 中国公路学报, 2019, 32(6): 34-42. |
JI X W, FEI C, HE X K, et al. Intention recognition and trajectory prediction for vehicles using LSTM network[J]. China Joural of Highway and Transport, 2019, 32(6): 34-42. | |
11 | DEO N, TRIVEDI M M. Convolutional social pooling for vehicle trajectory prediction[C]. IEEE/CVF Conference on Computer Vision, 2018: 1549-15498. |
12 | 高镇海, 鲍明喜, 高菲, 等. 基于LSTM概率多模态预期轨迹预测方法[J]. 汽车工程, 2023, 45(7):1145-1152. |
GAO Z H, BAO X M, GAO F, et al. The method of probabilistic multi-modal expected trajectory prediction based on LSTM[J]. Automotive Engineering, 2023, 45(7): 1145-1152. | |
13 | CHUNG J, GÜLÇEHRE Ç, CHO K, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[J]. arXiv preprint arXiv: , 2014. |
14 | DEO N, WOLFF E M, BEIJBOM O. Multimodal trajectory prediction conditioned on lane-graph traversals[C]. Conference on Robot Learning, 2021. |
15 | HAO Z, HUANG X, WANG K, et al. Attention -based GRU for driver intention recognition and vehicle trajectory prediction[C]. 4th CAA International Conference on Vehicular Control, 2020: 86-91. |
16 | 刘创, 梁军. 基于注意力机制的车辆运动轨迹预测[J]. 浙江大学学报(工学版), 2020, 54(6): 1156-1163. |
LIU C, LIANG J. Vehicle motion trajectory prediction based on attention mechanism[J]. Journal of Zhejiang University (Engineering Science), 2020, 54(6): 1156-1163. | |
17 | 包智鹏, 支永帅, 张素民, 等. 基于BiGRU的多模态驾驶行为及轨迹预测[J]. 大连理工大学学报, 2021, 61(3): 246-254. |
BAO Z P, ZHI Y S, ZHANG S M, et al. BiGRU based multi-modal maneuvers and trajectory prediction[J]. Journal of Dalian University of Technology, 2021, 61(3): 246-254. | |
18 | KIM H, KIM D, KIM G, et al. Multi-head attention based probabilistic vehicle trajectory prediction[C]. IEEE Intelligent Vehicles Symposium, 2020: 1720-1725. |
19 | MESSAOUD K, YAHIAOUI I, VERROUST-BLONDET A, et al. Attention based vehicle trajectory prediction[J]. IEEE Transactions on Intelligent Vehicles, 2020, 6: 175-185. |
20 | SHENG Z, XU Y, XUE S, et al. Graph-based spatial-temporal convolutional network for vehicle trajectory prediction in autonomous driving[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23: 17654-17665. |
21 | 田彦涛, 黄兴, 卢辉遒, 等. 基于注意力与深度交互的周车多模态行为轨迹预测[J]. 吉林大学学报(工学版), 2023, 53(5): 1474-1480. |
TIAN Y T, HUANG X, LU H Q, et al. Multi-mode behavior trajectory prediction of surrounding vehicle based on attention and depth interaction[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(5): 1474-1480. | |
22 | MO X, XING Y, LV C. Graph and recurrent neural network-based vehicle trajectory prediction for highway driving[C]. IEEE International Intelligent Transportation Systems Conference, 2021: 1934-1939. |
23 | LI X, YING X, CHUAH M C. GRIP++: enhanced graph-based interaction-aware trajectory prediction for autonomous driving[J]. arXiv preprint arXiv: , 2020. |
24 | CHO K, MERRIENBOER B V, GÜLÇEHRE Ç, et al. Learning phrase representations using RNN encoder–decoder for statistical machine translation[C]. Conference on Empirical Methods in Natural Language Processing, 2014. |
25 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017, 30. |
26 | VELICKOVIC P, CUCURULL G, CASANOVA A, et al. Graph attention networks[J]. arXiv preprint arXiv: , 2018. |
27 | SALZMANN T, BORIS I, CHAKRAVARTY P, et al. Trajectron++: multi-agent generative trajectory forecasting with heterogeneous data for control[J]. arXiv preprint arXiv: , 2021. |
28 | KIM B, PARK S, LEE S S, et al. LaPred: lane-aware prediction of multi-modal future trajectories of dynamic agents[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 14631-14640. |
29 | DEO N, TRIVEDI M M. Trajectory forecasts in unknown environments conditioned on grid-based plans[J]. arXiv preprint arXiv: , 2021. |
30 | GILLES T, SABATINI S, TSISHKOU D V, et al. GOHOME: graph-oriented heatmap output for future motion estimation[C]. International Conference on Robotics and Automation, 2021: 9107-9114. |
31 | GIRGIS R, GOLEMO F, CODEVILLA F, et al. Latent variable sequential set transformers for joint multi-agent motion prediction[C]. International Conference on Learning Representations, 2021. |
32 | GILLES T, SABATINI S, TSISHKOU D V, et al. THOMAS: trajectory heatmap output with learned multi-agent sampling[J]. arXiv preprint arXiv: , 2022. |
33 | LIU M, CHENG H, CHEN L, et al. LAformer: trajectory prediction for autonomous driving with lane-aware scene constraints[J]. arXiv preprint arXiv: , 2023. |
[1] | Xiaocong Zhao,Shiyu Fang,Zirui Li,Jian Sun. Extraction and Application of Key Utility Term for Social Driving Interaction [J]. Automotive Engineering, 2024, 46(2): 230-240. |
[2] | Yanli Ma, Qin Qin, Fangqi Dong, Yining Lou. Takeover Risk Assessment Model Based on Risk Field Theory Under Different Cognitive Secondary Tasks [J]. Automotive Engineering, 2024, 46(1): 9-17. |
[3] | Weiguo Liu,Zhiyu Xiang,Weiping Liu,Daoxin Qi,Zixu Wang. Research on Vehicle Control Algorithm Based on Distributed Reinforcement Learning [J]. Automotive Engineering, 2023, 45(9): 1637-1645. |
[4] | Yongtao Li,Chenxu Sun,Weiguang Zheng,Enyong Xu,Yufang Li,Shanchao Wang. Collision Warning Based on Fusion of Millimeter Wave Radar and Vision [J]. Automotive Engineering, 2023, 45(9): 1666-1676. |
[5] | Ming Wang,Xiaolin Tang,Kai Yang,Guofa Li,Xiaosong Hu. A Motion Planning Method for Autonomous Vehicles Considering Prediction Risk [J]. Automotive Engineering, 2023, 45(8): 1362-1372. |
[6] | Dongyu Zhao, Shuen Zhao. Autonomous Driving 3D Object Detection Based on Cascade YOLOv7 [J]. Automotive Engineering, 2023, 45(7): 1112-1122. |
[7] | Jiahao Zhao,Zhiquan Qi,Zhifeng Qi,Hao Wang,Lei He. Calculation of Heading Angle of Parallel Large Vehicle Based on Tire Feature Points [J]. Automotive Engineering, 2023, 45(6): 1031-1039. |
[8] | Xia Zhao,Zhao Li,Rui Fu,Zhenzhen Ge,Chang Wang. Real-Time Detection of Distracted Driving Behavior Based on Deep Convolution-Tokens Dimensionality Reduction Optimized Visual Transformer Model [J]. Automotive Engineering, 2023, 45(6): 974-988. |
[9] | Lisheng Jin,Guangde Han,Xianyi Xie,Baicang Guo,Guofeng Liu,Wentao Zhu. Review of Autonomous Driving Decision-Making Research Based on Reinforcement Learning [J]. Automotive Engineering, 2023, 45(4): 527-540. |
[10] | Qingyang Huang,Xiaoping Jin,Yikang Zhang. Analysis of Drivers' Driving Posture Change Rule Under the Condition of Automatic Driving Level Improvement [J]. Automotive Engineering, 2023, 45(3): 382-392. |
[11] | Linhui Li,Xinliang Zhang,Yifan Fu,Jing Lian,Jiaxu Ma. Research on Visible Light and Infrared Post-Fusion Detection Based on TC-YOLOv7 Algorithm [J]. Automotive Engineering, 2023, 45(12): 2280-2290. |
[12] | Zhengfa Liu,Ya Wu,Peigen Liu,Rongqi Gu,Guang Chen. Cross-Domain Object Detection for Intelligent Driving Based on Joint Distribution Matching of Features and Labels [J]. Automotive Engineering, 2023, 45(11): 2082-2091. |
[13] | Long Chen,Chen Yang,Yingfeng Cai,Hai Wang,Yicheng Li. Pedestrian Crossing Intention Prediction Method Based on Multimodal Feature Fusion [J]. Automotive Engineering, 2023, 45(10): 1779-1790. |
[14] | Xiaojun Zhang,Jingzhe Xi,Yanlei Shi,Anlu Yuan. Lightweight YOLOv7-R Algorithm for Road-Side View Target Detection [J]. Automotive Engineering, 2023, 45(10): 1833-1844. |
[15] | Pulei Xu,Yingfeng Cai,Yubo Lian,Xiaoqiang Sun,Hai Wang,Long Chen,Yilin Zhong. AFS/DYC Coordinated Control of Intelligent Vehicles Based on Improved Hierarchical Extensibility Theory [J]. Automotive Engineering, 2023, 45(1): 20-31. |
|