Automotive Engineering ›› 2023, Vol. 45 ›› Issue (7): 1112-1122.doi: 10.19562/j.chinasae.qcgc.2023.07.002
Special Issue: 智能网联汽车技术专题-感知&HMI&测评2023年
Previous Articles Next Articles
Received:
2022-12-14
Revised:
2023-01-24
Online:
2023-07-25
Published:
2023-07-25
Contact:
Shuen Zhao
E-mail:zse0916@163.com
Dongyu Zhao, Shuen Zhao. Autonomous Driving 3D Object Detection Based on Cascade YOLOv7[J].Automotive Engineering, 2023, 45(7): 1112-1122.
"
算法 | 图像 | 点云 | 鸟瞰图 | 耗时/(ms·帧-1) | 检测精度AP/% 车辆 IoU≥0.7 行人/骑车人 IoU≥0.5 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
车辆 | 行人 | 骑车人 | |||||||||||
简单 | 中等 | 困难 | 简单 | 中等 | 困难 | 简单 | 中等 | 困难 | |||||
PointGNN[ | ? | 500 | 87.89 | 78.34 | 77.38 | ||||||||
Voxelnet[ | ? | 33 | 81.97 | 65.46 | 62.85 | 57.86 | 53.42 | 48.87 | 67.17 | 47.65 | 45.11 | ||
SECOND[ | ? | 40 | 83.13 | 73.26 | 66.20 | 51.07 | 42.56 | 37.29 | 70.51 | 53.85 | 46.90 | ||
F-PointNet v1 | ? | ? | 66 | 84.33 | 71.38 | 63.43 | 65.83 | 56.16 | 49.61 | 74.22 | 55.99 | 52.61 | |
F-PointNet v2 | ? | ? | 131 | 85.76 | 71.92 | 63.65 | 70.00 | 61.32 | 53.59 | 77.15 | 56.49 | 53.37 | |
MV3D[ | ? | ? | 302 | 71.29 | 62.68 | 56.56 | |||||||
文献[ | ? | ? | 102 | 83.38 | 74.65 | 63.44 | |||||||
文献[ | ? | 45 | 90.29 | 84.61 | 80.34 | ||||||||
文献[ | ? | ? | 203 | 82.95 | 67.48 | 64.22 | 58.90 | 55.33 | 50.16 | 68.42 | 48.53 | 46.08 | |
文献[ | ? | ? | 93 | 88.27 | 78.53 | 77.75 | |||||||
级联模型 | ? | ? | 91 | 92.08 | 84.70 | 81.32 | 76.67 | 69.08 | 60.92 | 76.68 | 62.27 | 57.82 |
"
指标 | 算法 | 车辆IoU≥0.7 | 行人IoU≥0.5 | 骑车人IoU≥0.5 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
简单 | 中等 | 困难 | 简单 | 中等 | 困难 | 简单 | 中等 | 困难 | ||
BEV检测精度AP/% | Voxelnet | 89.60 | 84.81 | 78.57 | 65.95 | 61.05 | 56.98 | 74.41 | 52.18 | 50.49 |
MV3D | 86.55 | 78.10 | 76.67 | |||||||
SECOND | 89.96 | 87.07 | 79.66 | |||||||
PointGNN | 89.82 | 88.31 | 87.16 | |||||||
PointPillars[ | 90.07 | 86.56 | 82.81 | 59.78 | 52.38 | 50.12 | 79.90 | 62.73 | 55.58 | |
F-PointNe v2 | 88.16 | 84.02 | 76.44 | 72.38 | 66.39 | 59.57 | 81.82 | 60.03 | 56.32 | |
级联模型 | 96.22 | 89.75 | 86.81 | 83.22 | 73.87 | 65.49 | 83.19 | 64.41 | 59.81 | |
平均航向相似度AOS/% | 3DOP[ | 91.58 | 86.80 | 76.80 | 61.57 | 54.79 | 51.12 | 73.94 | 55.59 | 53.00 |
Mono3D[ | 91.90 | 86.28 | 77.09 | 62.20 | 55.77 | 51.78 | 71.95 | 53.10 | 51.32 | |
文献[ | 87.21 | 81.47 | 74.64 | |||||||
级联模型 | 92.21 | 86.24 | 77.28 | 56.35 | 54.85 | 50.60 | 73.24 | 56.84 | 55.58 |
1 | LI B, OUYANG W, SHENG L, et al. Gs3D: an efficient 3D object detection framework for autonomous driving[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2019: 1019-1028. |
2 | GIRSHICK R. Fast R-CNN[C]. Proceedings of the IEEE International Conference on Computer Vision. IEEE, 2015: 1440-1448. |
3 | LI P, CHEN X, SHEN S. Stereo R-CNN based 3D object detection for autonomous driving[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2019: 7644-7652. |
4 | HE K, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]. Proceedings of the IEEE International Conference on Computer Vision. IEEE, 2017: 2961-2969. |
5 | BEWLEY A, SUN P, MENSINK T, et al. Range conditioned dilated convolutions for scale invariant 3D object detection[J]. arXiv preprint arXiv: , 2020. |
6 | 李悄, 李垚辰, 张玉龙, 等. 采用稀疏3D卷积的单阶段点云三维目标检测方法[J]. 西安交通大学学报, 2022, 56(9): 112-122. |
LI Q, LI Y C, ZHANG Y L, et al. A single-stage point cloud 3D object detection method using sparse 3D convolution[J]. Journal of Xi’an Jiaotong University, 2022, 56(9): 112-122. | |
7 | CAESAR H, BANKITI V, LANG A H, et al. Nuscenes: a multimodal dataset for autonomous driving[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2020: 11621-11631. |
8 | HU J S K, KUAI T, WASLANDER S L. Point density-aware voxels for lidar 3D object detection[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2022: 8469-8478. |
9 | 张名芳, 吴禹峰, 王力,等. 基于金字塔特征融合的二阶段三维点云车辆检测[J]. 交通运输系统工程与信息, 2022, 22(5): 107-116. |
ZHANG M F, WU Y F, WANG L, et al. Pyramid-feature-fusion-based two stage vehicle detection via 3D point cloud[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(5): 107-116. | |
10 | SHI S, WANG X, LI H. PointRCNN: 3D object proposal generation and detection from point cloud[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2019: 770-779. |
11 | QI C R, SU H, MO K, et al. Pointnet: deep learning on point sets for 3D classification and segmentation[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2017: 652-660. |
12 | QI C R, YI L, SU H, et al. Pointnet++: deep hierarchical feature learning on point sets in a metric space[J]. arXiv preprint arXiv: , 2017. |
13 | YANG Z, SUN Y, LIU S, et al. 3DSSD: point-based 3D single stage object detector[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2020: 11040-11048. |
14 | 谢德胜, 徐友春, 陆峰, 等. 基于多传感器信息融合的3维目标实时检测[J]. 汽车工程, 2022, 44(3): 340-349. |
XIE D X, XU Y C, LU F, et al. Real-time detection of 3D objects based on multi-sensor information fusion[J]. Automotive Engineering, 2022, 44(3): 340-349. | |
15 | WU X, PENG L, YANG H, et al. Sparse fuse dense: towards high quality 3D detection with depth completion[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2022: 5418-5427. |
16 | 徐晨, 倪蓉蓉, 赵耀. 融合稀疏点云补全的3D目标检测算法[J]. 图学学报, 2021, 42(1): 37-43. |
XU C, NI R R, ZHAO Y. 3D object detection algorithm combined with sparse point cloud completion[J]. Journal of Graphics, 2021, 42(1): 37-43. | |
17 | QI C R, LIU W, WU C, et al. Frustum pointnets for 3D object detection from rgb-d data[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2018: 918-927. |
18 | 张旭豪. 面向动车场景的三维目标检测[D]. 成都: 电子科技大学, 2022. |
ZHANG X H. 3D object detection in electric multiple units scene[D]. Chengdu: University of Electronic Science and Technology of China, 2022. | |
19 | WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[J]. arXiv preprint arXiv: , 2022. |
20 | SHI W, RAJKUMAR R. Point-GNN: graph neural network for 3D object detection in a point cloud[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 1711-1719. |
21 | ZHOU Y, TUZEL O. VoxelNet: end-to-end learning for point cloud based 3D object detection[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2018: 4490-4499. |
22 | CHEN X, MA H, WAN J, et al. Multi-view 3D object detection network for autonomous driving[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2017: 1907-1915. |
23 | 刘通, 高思洁, 聂为之. 基于多模态信息融合的多目标检测算法[J]. 激光与光电子学进展, 2022, 59(8): 339-348. |
LIU T, GAO S J, NIE W Z. Multitarget detection algorithm based on multimodal information fusion[J]. Laser and Optoelectronics Progress, 2022, 59(8): 339-348. | |
24 | XIE L, XIANG C, YU Z X, et al. PI-RCNN: an efficient multi-sensor 3D object detector with point-based attentive cont-conv fusion module[J]. Proceedings of the AAAI Conference on Artificial Intelligence, AAAI, 2020, 34(7): 12460-12467. |
25 | CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]. European Conference on Computer Vision. Springer. Cham, 2020: 213-229. |
26 | LIU Z, MAO H Z, WU C Y, et al. A ConvNet for the 2020s[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2022: 11976-11986. |
27 | LANG A H, VORA S, CAESAR H, et al. PointPillars: fast encoders for object detection from point clouds[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2019: 12697-12705. |
28 | CHEN X, KUNDU K, ZHU Y, et al. 3D object proposals for accurate object class detection[C]. International Conference on Neural Information Processing Systems. MIT Press, 2015. |
29 | CHEN X, KUNDU K, ZHANG Z, et al. Monocular 3D object detection for autonomous driving[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2016: 2147-2156. |
[1] | Xiaocong Zhao,Shiyu Fang,Zirui Li,Jian Sun. Extraction and Application of Key Utility Term for Social Driving Interaction [J]. Automotive Engineering, 2024, 46(2): 230-240. |
[2] | Yanli Ma, Qin Qin, Fangqi Dong, Yining Lou. Takeover Risk Assessment Model Based on Risk Field Theory Under Different Cognitive Secondary Tasks [J]. Automotive Engineering, 2024, 46(1): 9-17. |
[3] | Weiguo Liu,Zhiyu Xiang,Weiping Liu,Daoxin Qi,Zixu Wang. Research on Vehicle Control Algorithm Based on Distributed Reinforcement Learning [J]. Automotive Engineering, 2023, 45(9): 1637-1645. |
[4] | Ming Wang,Xiaolin Tang,Kai Yang,Guofa Li,Xiaosong Hu. A Motion Planning Method for Autonomous Vehicles Considering Prediction Risk [J]. Automotive Engineering, 2023, 45(8): 1362-1372. |
[5] | Jiahao Zhao,Zhiquan Qi,Zhifeng Qi,Hao Wang,Lei He. Calculation of Heading Angle of Parallel Large Vehicle Based on Tire Feature Points [J]. Automotive Engineering, 2023, 45(6): 1031-1039. |
[6] | Lisheng Jin,Guangde Han,Xianyi Xie,Baicang Guo,Guofeng Liu,Wentao Zhu. Review of Autonomous Driving Decision-Making Research Based on Reinforcement Learning [J]. Automotive Engineering, 2023, 45(4): 527-540. |
[7] | Qingyang Huang,Xiaoping Jin,Yikang Zhang. Analysis of Drivers' Driving Posture Change Rule Under the Condition of Automatic Driving Level Improvement [J]. Automotive Engineering, 2023, 45(3): 382-392. |
[8] | Zhengfa Liu,Ya Wu,Peigen Liu,Rongqi Gu,Guang Chen. Cross-Domain Object Detection for Intelligent Driving Based on Joint Distribution Matching of Features and Labels [J]. Automotive Engineering, 2023, 45(11): 2082-2091. |
[9] | Xiaojun Zhang,Jingzhe Xi,Yanlei Shi,Anlu Yuan. Lightweight YOLOv7-R Algorithm for Road-Side View Target Detection [J]. Automotive Engineering, 2023, 45(10): 1833-1844. |
[10] | Pulei Xu,Yingfeng Cai,Yubo Lian,Xiaoqiang Sun,Hai Wang,Long Chen,Yilin Zhong. AFS/DYC Coordinated Control of Intelligent Vehicles Based on Improved Hierarchical Extensibility Theory [J]. Automotive Engineering, 2023, 45(1): 20-31. |
[11] | Runhui Huang,Likun Hu,Mingfang Su,Daye Xu,Aoran Chen. Semantic Segmentation Method of LiDAR Point Cloud Based on 3D Conical Grid [J]. Automotive Engineering, 2022, 44(8): 1173-1182. |
[12] | Zhenhai Gao,Xiangtong Yan,Fei Gao. A Decision-making Method for Longitudinal Autonomous Driving Based on Inverse Reinforcement Learning [J]. Automotive Engineering, 2022, 44(7): 969-975. |
[13] | Dafang Wang,Jingdong Du,Jiang Cao,Mei Zhang,Gang Zhao. Research on Style Transfer Network for Autonomous Driving Data Generation [J]. Automotive Engineering, 2022, 44(5): 684-690. |
[14] | Jie Hu,Minchao Zhang,Wencai Xu,Ruinan Chen,Xinkai Zhong,Linglei Zhu. Parallel Parking Trajectory Planning for Autonomous Vehicles [J]. Automotive Engineering, 2022, 44(3): 330-339. |
[15] | Jinghua Guo,Zhifei He,Yugong Luo,Keqiang Li. Vehicle Cut-in Trajectory Prediction Based on Deep Learning in a Human-machine Mixed Driving Environment [J]. Automotive Engineering, 2022, 44(2): 153-160. |
|