Automotive Engineering ›› 2023, Vol. 45 ›› Issue (11): 2082-2091.doi: 10.19562/j.chinasae.qcgc.2023.11.009
Special Issue: 智能网联汽车技术专题-感知&HMI&测评2023年
Previous Articles Next Articles
Zhengfa Liu1,Ya Wu1,Peigen Liu1,Rongqi Gu2,Guang Chen1()
Received:
2023-09-07
Revised:
2023-10-22
Online:
2023-11-25
Published:
2023-11-27
Contact:
Guang Chen
E-mail:guangchen@tongji.edu.cn
Zhengfa Liu,Ya Wu,Peigen Liu,Rongqi Gu,Guang Chen. Cross-Domain Object Detection for Intelligent Driving Based on Joint Distribution Matching of Features and Labels[J].Automotive Engineering, 2023, 45(11): 2082-2091.
"
方法 | person | rider | car | truck | bus | train | motor | bicycle | mAP/ % |
---|---|---|---|---|---|---|---|---|---|
Source[ | 24.1 | 33.1 | 34.3 | 4.1 | 22.3 | 3.0 | 15.3 | 26.5 | 20.3 |
DA-Faster[ | 25.0 | 31.0 | 40.5 | 22.1 | 35.3 | 20.2 | 20.0 | 27.1 | 27.6 |
SCDA[ | 33.5 | 38.0 | 48.5 | 26.5 | 39.0 | 23.3 | 28.0 | 33.6 | 33.8 |
MAF[ | 28.2 | 39.5 | 43.9 | 23.8 | 39.9 | 33.3 | 29.2 | 33.9 | 34.0 |
SWDA[ | 29.9 | 42.3 | 43.5 | 24.5 | 36.2 | 32.6 | 30.0 | 35.3 | 34.3 |
ICR-CCR[ | 32.9 | 43.8 | 49.2 | 27.2 | 45.1 | 36.4 | 30.3 | 34.6 | 37.4 |
HTCN[ | 33.2 | 47.5 | 47.9 | 31.6 | 47.4 | 40.9 | 32.3 | 37.1 | |
RPN-PR[ | 33.3 | 45.6 | 50.5 | 43.6 | 42.0 | 29.7 | 36.8 | 39.0 | |
AFAN[ | 42.5 | 44.6 | 57.0 | 26.4 | 28.3 | 33.2 | 37.1 | 39.6 | |
SLNO[ | 33.4 | 44.1 | 49.3 | 24.9 | 42.3 | 29.3 | 30.1 | 37.1 | 36.3 |
SC-UDA[ | 43.7 | 27.1 | 43.8 | 29.7 | 31.2 | 38.7 | |||
DDF[ | 37.2 | 51.9 | 24.7 | 43.9 | 34.2 | 40.8 | 39.1 | ||
FLDMN | 33.4 | 45.4 | 50.9 | 29.9 | 55.4 | 33.4 | 36.5 | 40.4 |
"
方法 | aero | bird | botl | car | chai | tabl | hrs | prsn | shep | train | bike |
---|---|---|---|---|---|---|---|---|---|---|---|
Source[ | 35.6 | 24.3 | 20.0 | 32.8 | 30.6 | 13.8 | 36.8 | 48.7 | 16.5 | 22.9 | 52.5 |
DA-Faster[ | 15.0 | 12.4 | 19.8 | 23.2 | 22.1 | 10.6 | 19.6 | 34.6 | 1.0 | 19.7 | 34.6 |
SWDA[ | 26.2 | 32.6 | 38.5 | 37.1 | 34.8 | 17.0 | 33.8 | 61.6 | 9.3 | 54.1 | 48.5 |
ICR-CCR[ | 28.7 | 31.8 | 40.1 | 36.6 | 38.7 | 17.6 | 33.3 | 61.3 | 22.3 | 49.1 | 55.3 |
HTCN[ | 33.6 | 34.0 | 45.6 | 39.8 | 39.7 | 21.1 | 63.0 | 19.3 | 50.2 | 58.9 | |
DC[ | 47.1 | 38.8 | 46.6 | 52.6 | 39.1 | 34.9 | 67.8 | 44.9 | 53.2 | ||
HCDN[ | 35.0 | 33.6 | 41.7 | 45.2 | 22.3 | 38.0 | 27.0 | 52.1 | |||
CROD[ | 31.4 | 44.3 | 42.5 | 50.2 | 22.0 | 36.5 | 58.9 | 8.3 | 62.4 | ||
FLDMN | 39.4 | 35.6 | 34.6 | 40.0 | 64.9 | 21.6 | 65.4 | 65.6 | |||
方法 | boat | bus | cat | cow | dog | mbike | plnt | sofa | tv | mAP/ % | |
Source[ | 23.0 | 43.9 | 10.7 | 11.7 | 6.0 | 45.9 | 41.9 | 7.3 | 32.0 | 27.8 | |
DA-Faster[ | 11.9 | 21.1 | 3.1 | 26.3 | 10.0 | 39.4 | 29.3 | 17.1 | 24.8 | 19.8 | |
SWDA[ | 33.7 | 54.3 | 18.6 | 58.3 | 12.5 | 65.5 | 24.9 | 49.1 | 38.1 | ||
ICR-CCR[ | 26.0 | 63.6 | 9.4 | 49.3 | 14.1 | 74.3 | 46.3 | 24.3 | 44.3 | 38.3 | |
HTCN[ | 23.4 | 57.0 | 12.0 | 51.3 | 20.1 | 72.8 | 43.1 | 30.1 | 51.8 | 40.3 | |
DC[ | 45.8 | 14.5 | 48.4 | 23.7 | 54.0 | 23.8 | 51.0 | 43.2 | |||
HCDN[ | 30.6 | 12.7 | 55.6 | 20.6 | 86.8 | 50.0 | 47.9 | ||||
CROD[ | 30.5 | 61.4 | 21.1 | 20.3 | 47.7 | 46.7 | 33.7 | 58.4 | 41.8 | ||
FLDMN | 38.6 | 71.4 | 61.2 | 89.9 | 46.6 | 29.3 | 46.3 |
"
方法 | aero | bird | botl | car | chai | tabl | hrs | prsn | shep | train | bike |
---|---|---|---|---|---|---|---|---|---|---|---|
Source[ | 35.6 | 24.3 | 20.0 | 32.8 | 30.6 | 13.8 | 48.7 | 16.5 | 22.9 | 52.5 | |
DA-Faster[ | 15.0 | 12.4 | 19.8 | 23.2 | 22.1 | 10.6 | 19.6 | 34.6 | 1.0 | 19.7 | 34.6 |
FLDMN-F | 39.0 | 37.7 | 35.6 | 63.8 | 26.0 | ||||||
FLDMN | 39.4 | 44.2 | 46.8 | 34.6 | 40.0 | 64.9 | 65.4 | 65.6 | |||
方法 | boat | bus | cat | cow | dog | bike | plnt | sofa | tv | mAP/% | |
Source[ | 23.0 | 43.9 | 10.7 | 11.7 | 6.0 | 45.9 | 41.9 | 7.3 | 32.0 | 27.8 | |
DA-Faster[ | 11.9 | 21.1 | 3.1 | 26.3 | 10.0 | 39.4 | 29.3 | 17.1 | 24.8 | 19.8 | |
FLDMN-F | 51.0 | 31.8 | |||||||||
FLDMN | 38.6 | 71.4 | 15.9 | 61.2 | 21.8 | 89.9 | 56.1 | 46.3 |
1 | 陈文强, 熊辉, 李克强, 等. 基于深度神经网络的行人及骑车人联合检测[J]. 汽车工程, 2018, 40(6): 726-733. |
CHEN W Q, XIONG L, LI K Q, et al. Joint detection of pedestrians and cyclists based on deep neural network[J]. Automotive Engineering, 2018, 40(6): 726-733. | |
2 | 冯润泽, 江昆, 于伟光, 等. 基于两阶段分类算法的中国交通标志牌识别[J]. 汽车工程, 2023,44(3):434-441. |
FENG R Z, JIANG K, YU W G, et al. Chinese traffic sign recognition based on two-stage classification algorithm[J]. Automotive Engineering, 2023,44(3):434-441. | |
3 | 谢德胜, 徐友春, 陆峰, 等. 基于多传感器信息融合的3维目标实时检测[J]. 汽车工程, 2022, 44(3): 11. |
XIE D S, XU Y C, LU F, et al. Real-time detection of 3D targets based on multi-sensor information fusion[J]. Automotive Engineering, 2022, 44(3): 11. | |
4 | CHEN Y, LI W, SAKARIDIS C, et al. Domain adaptive faster R-CNN for object detection in the wild[C]. Proceedings of the IEEE conference on computer vision and pattern recognition, 2018: 3339-3348. |
5 | 王大方, 杜京东, 曹江, 等. 面向自动驾驶数据生成的风格迁移网络研究[J]. 汽车工程, 2022, 44(5): 684-690. |
WANG D F, DU J D, CAO J, et al. Research on style transfer network for autonomous driving data generation[J]. Automotive Engineering, 2022, 44(5): 684-690. | |
6 | 胡杰, 徐博远, 熊宗权, 等. 基于多尺度掩码分类域自适应网络的跨域目标检测算法[J]. 汽车工程, 2022, 44(9): 1327-1338. |
HU J, XU B Y, XIONG Z Q, et al. Cross-domain target detection algorithm based on multi-scale mask classification domain adaptive network[J]. Automotive Engineering, 2022, 44(9): 1327-1338. | |
7 | LI B, WANG Y, CHE T, et al. Rethinking distributional matching based domain adaptation[J]. arXiv preprint arXiv:, 2020. |
8 | CAO Y, LONG M, WANG J. Unsupervised domain adaptation with distribution matching machines[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32(1). |
9 | CAI T, GAO R, LEE J, et al. A theory of label propagation for subpopulation shift[C]. International Conference on Machine Learning. PMLR, 2021: 1170-1182. |
10 | LIU X, GUO Z, LI S, et al. Adversarial unsupervised domain adaptation with conditional and label shift: infer, align and iterate[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 10367-10376. |
11 | KUMAR A, RAGHUNATHAN A, JONES R, et al. Fine-tuning can distort pretrained features and underperform out-of-distribution[J]. arXiv preprint arXiv:, 2022. |
12 | WU Y, WINSTON E, KAUSHIK D, et al. Domain adaptation with asymmetrically-relaxed distribution alignment[C]. International Conference on Machine Learning. PMLR, 2019: 6872-6881. |
13 | TACHET DES COMBES R, ZHAO H, WANG Y X, et al. Domain adaptation with conditional distribution matching and generalized label shift[J]. Advances in Neural Information Processing Systems, 2020, 33: 19276-19289. |
14 | ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]. Proceedings of the IEEE International Conference on Computer Vision, 2017: 2223-2232. |
15 | LIU F, ZHANG X, WAN F, et al. Domain contrast for domain adaptive object detection[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 32(12): 8227-8237. |
16 | DENG Z, KONG Q, AKIRA N, et al. Hierarchical contrastive adaptation for cross-domain object detection[J]. Machine Vision and Applications, 2022, 33(4): 62. |
17 | HUANG W, YI M, ZHAO X. Towards the generalization of contrastive self-supervised learning[J]. arXiv preprint arXiv:, 2021. |
18 | OORD A, LI Y, VINYALS O. Representation learning with contrastive predictive coding[J]. arXiv preprint arXiv:, 2018. |
19 | YANG G, XIA H, DING M, et al. Bi-directional generation for unsupervised domain adaptation[C]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(4): 6615-6622. |
20 | HSU H K, YAO C H, TSAI Y H, et al. Progressive domain adaptation for object detection[C]. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2020: 749-757. |
21 | GAO L, HU H M, LI M. A progressive domain adaptation for object detection via coarse-grained foreground guidance[C]. 2022 IEEE 24th International Workshop on Multimedia Signal Processing (MMSP). IEEE, 2022: 1-6. |
22 | PRABHU V, KHARE S, KARTIK D, et al. Sentry: selective entropy optimization via committee consistency for unsupervised domain adaptation[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 8558-8567. |
23 | CORDTS M, OMRAN M, RAMOS S, et al. The cityscapes dataset for semantic urban scene understanding[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 3213-3223. |
24 | SAKARIDIS C, DAI D, VAN GOOL L. Semantic foggy scene understanding with synthetic data[J]. International Journal of Computer Vision, 2018, 126(9): 973-992. |
25 | JOHNSON-ROBERSON M, BARTO C, MEHTA R, et al. Driving in the matrix: can virtual worlds replace human-generated annotations for real world tasks?[J]. arXiv preprint arXiv:, 2016. |
26 | EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The pascal visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303-338. |
27 | INOUE N, FURUTA R, YAMASAKI T, et al. Cross-domain weakly-supervised object detection through progressive domain adaptation[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 5001-5009. |
28 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:, 2014. |
29 | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778. |
30 | REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. Advances in Neural Information Processing Systems, 2015, 28. |
31 | ZHU X, PANG J, YANG C, et al. Adapting object detectors via selective cross-domain alignment[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 687-696. |
32 | HE Z, ZHANG L. Multi-adversarial faster-rcnn for unrestricted object detection[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 6668-6677. |
33 | SAITO K, USHIKU Y, HARADA T, et al. Strong-weak distribution alignment for adaptive object detection[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 6956-6965. |
34 | XU C D, ZHAO X R, JIN X, et al. Exploring categorical regularization for domain adaptive object detection[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11724-11733. |
35 | CHEN C, ZHENG Z, DING X, et al. Harmonizing transferability and discriminability for adapting object detectors[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 8869-8878. |
36 | ZHANG Y, WANG Z, MAO Y. RPN prototype alignment for domain adaptive object detector[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 12425-12434. |
37 | WANG H, LIAO S, SHAO L. AFAN: augmented feature alignment network for cross-domain object detection[J]. IEEE Transactions on Image Processing, 2021, 30: 4046-4056. |
38 | XU Q, LI Y, WANG G, et al. Skip-layer network with optimization method for domain adaptive detection[J]. Plos One, 2022, 17(3): e0263748. |
39 | YU F, WANG D, CHEN Y, et al. SC-UDA: style and content gaps aware unsupervised domain adaptation for object detection[C]. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2022: 382-391. |
40 | LIU D, ZHANG C, SONG Y, et al. Decompose to adapt: cross-domain object detection via feature disentanglement[J]. IEEE Transactions on Multimedia, 2022, 25: 1333-1344. |
41 | TIAN K, ZHANG C, WANG Y, et al. Multi-level consistency regularization for domain adaptive object detection[J]. Neural Computing and Applications, 2023: 1-16. |
42 | VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(11). |
[1] | Xinke Fu,Yingfeng Cai,Long Chen,Hai Wang,Qingchao Liu. Decision-Making for Autonomous Driving in Uncertain Environment [J]. Automotive Engineering, 2024, 46(2): 211-221. |
[2] | Xiaocong Zhao,Shiyu Fang,Zirui Li,Jian Sun. Extraction and Application of Key Utility Term for Social Driving Interaction [J]. Automotive Engineering, 2024, 46(2): 230-240. |
[3] | Yanli Ma, Qin Qin, Fangqi Dong, Yining Lou. Takeover Risk Assessment Model Based on Risk Field Theory Under Different Cognitive Secondary Tasks [J]. Automotive Engineering, 2024, 46(1): 9-17. |
[4] | Weiguo Liu,Zhiyu Xiang,Weiping Liu,Daoxin Qi,Zixu Wang. Research on Vehicle Control Algorithm Based on Distributed Reinforcement Learning [J]. Automotive Engineering, 2023, 45(9): 1637-1645. |
[5] | Ming Wang,Xiaolin Tang,Kai Yang,Guofa Li,Xiaosong Hu. A Motion Planning Method for Autonomous Vehicles Considering Prediction Risk [J]. Automotive Engineering, 2023, 45(8): 1362-1372. |
[6] | Cheng Lin, Bowen Wang, Lü Peiyuan, Xinle Gong, Xiao Yu. Research on Motion Planning and Cooperative Control for Autonomous Vehicles with Lane Change Gaming Maneuvers Under the Curved Road [J]. Automotive Engineering, 2023, 45(7): 1099-1111. |
[7] | Dongyu Zhao, Shuen Zhao. Autonomous Driving 3D Object Detection Based on Cascade YOLOv7 [J]. Automotive Engineering, 2023, 45(7): 1112-1122. |
[8] | Jiahao Zhao,Zhiquan Qi,Zhifeng Qi,Hao Wang,Lei He. Calculation of Heading Angle of Parallel Large Vehicle Based on Tire Feature Points [J]. Automotive Engineering, 2023, 45(6): 1031-1039. |
[9] | Lisheng Jin,Guangde Han,Xianyi Xie,Baicang Guo,Guofeng Liu,Wentao Zhu. Review of Autonomous Driving Decision-Making Research Based on Reinforcement Learning [J]. Automotive Engineering, 2023, 45(4): 527-540. |
[10] | Yanyan Chen,Hai Wang,Yingfeng Cai,Long Chen,Yicheng Li. Efficient Automatic Driving Instance Segmentation Method Based on Detection [J]. Automotive Engineering, 2023, 45(4): 541-550. |
[11] | Qingyang Huang,Xiaoping Jin,Yikang Zhang. Analysis of Drivers' Driving Posture Change Rule Under the Condition of Automatic Driving Level Improvement [J]. Automotive Engineering, 2023, 45(3): 382-392. |
[12] | Lü Ying,Xu Qi,Qiuzheng Liu,Xinyu Wang,Guoying Chen. Path Tracking Control Method with Steering Lag for Autonomous Vehicles [J]. Automotive Engineering, 2023, 45(12): 2234-2241. |
[13] | Long Chen,Chen Yang,Yingfeng Cai,Hai Wang,Yicheng Li. Pedestrian Crossing Intention Prediction Method Based on Multimodal Feature Fusion [J]. Automotive Engineering, 2023, 45(10): 1779-1790. |
[14] | Pulei Xu,Yingfeng Cai,Yubo Lian,Xiaoqiang Sun,Hai Wang,Long Chen,Yilin Zhong. AFS/DYC Coordinated Control of Intelligent Vehicles Based on Improved Hierarchical Extensibility Theory [J]. Automotive Engineering, 2023, 45(1): 20-31. |
[15] | Fengchong Lan,Yingjie Liu,Jiqing Chen,Zhaolin Liu. Study on Motion Planning of Autonomous Vehicles in Cut-in Scenes Based on Dynamic Game Algorithm [J]. Automotive Engineering, 2023, 45(1): 9-19. |
|