Automotive Engineering ›› 2023, Vol. 45 ›› Issue (9): 1637-1645.doi: 10.19562/j.chinasae.qcgc.2023.09.012
Special Issue: 智能网联汽车技术专题-控制2023年
Previous Articles Next Articles
Weiguo Liu1,2(),Zhiyu Xiang1,Weiping Liu2,Daoxin Qi2,Zixu Wang2
Received:
2023-04-18
Revised:
2023-06-23
Online:
2023-09-25
Published:
2023-09-23
Contact:
Weiguo Liu
E-mail:liuweiguo@china-icv.cn
Weiguo Liu,Zhiyu Xiang,Weiping Liu,Daoxin Qi,Zixu Wang. Research on Vehicle Control Algorithm Based on Distributed Reinforcement Learning[J].Automotive Engineering, 2023, 45(9): 1637-1645.
1 | 张新钰,高洪波,赵建辉,等.基于深度学习的自动驾驶技术综述[J].清华大学学报(自然科学版), 2018, 58(4): 438-444. |
ZHANG X Y, GAO H B, ZHAO J H, et al. Overview of deep learning intelligent driving methods[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(4): 438-444. | |
2 | 冯洋,夏志龙,郭安,等.自动驾驶软件测试技术研究综述[J].中国图象图形学报, 2021, 26(1): 13-27. |
FENG Y, XIA Z L, GUO A, et al. Survey of testing techniques of autonomous driving software[J]. Journal of Image and Graphics, 2021, 26(1): 13-27 | |
3 | 许如晨. 基于深度强化学习的自动驾驶策略研究[D].杭州:浙江大学, 2021. |
XU R C. Research on autonomous driving strategy based on deep reinforcement learning[D]. Hangzhou: Zhejiang University, 2021. | |
4 | DOSOVITSKIY A, ROS G, CODEVILLA F, et al. Carla: an open urban driving simulator[C].Conference on Robot Learning. PMLR, 2017: 1-16. |
5 | AGARWAL T, ARORA H, SCHNEIDER J. Affordance-based reinforcement learning for urban driving[J]. arXiv preprint arXiv:, 2021. |
6 | HORGAN D, QUAN J, BUDDEN D, et al. Distributed prioritized experience replay[J]. arXiv preprint arXiv:, 2018. |
7 | ESPEHOLT L, SOYER H, MUNOS R, et al. Impala: scalable distributed deep-RL with importance weighted actor-learner architectures[C].International Conference on Machine Learning. PMLR, 2018: 1407-1416. |
8 | CODEVILLA F, SANTANA E, LÓPEZ A M, et al. Exploring the limitations of behavior cloning for autonomous driving[C].Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 9329-9338. |
9 | 杨顺,蒋渊德,吴坚,等.基于多类型传感数据的自动驾驶深度强化学习方法[J].吉林大学学报(工学版), 2019, 49(4): 1026-1033. |
YANG S,JIANG Y D, WU J, et al. Autonomous driving policy learning based on deep reinforcement learning and multi-type sensor data[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1026-1033. | |
10 | HAARNOJA T, ZHOU A, ABBEEL P, et al. Soft actor-critic: off-policy maximum entropy deep reinforcement learning with a stochastic actor[C].International Conference on Machine Learning. PMLR, 2018: 1861-1870. |
11 | POLYAK B T, JUDITSKY A B. Acceleration of stochastic approximation by averaging[J]. SIAM Journal on Control and Optimization, 1992, 30(4): 838-855. |
12 | GENG J, LI D, CHENG Y, et al. HiPS: hierarchical parameter synchronization in large-scale distributed machine learning[C].Proceedings of the 2018 Workshop on Network Meets AI & ML. 2018: 1-7. |
13 | WU X, LI X, LI J, et al. Caching transient content for IoT sensing: multi-agent soft actor-critic[J]. IEEE Transactions on Communications, 2021, 69(9): 5886-5901. |
14 | CODEVILLA F, SANTANA E, LÓPEZ A M, et al. Exploring the limitations of behavior cloning for autonomous driving[C].Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 9329-9338. |
15 | XIAO Y, CODEVILLA F, GURRAM A, et al. Multimodal end-to-end autonomous driving[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 23(1): 537-547. |
16 | ZHANG Z, ONG Y S, WANG D, et al. A collaborative multiagent reinforcement learning method based on policy gradient potential[J]. IEEE Transactions on Cybernetics, 2019, 51(2): 1015-1027. |
17 | STEVIĆ S, KRUNIĆ M, DRAGOJEVIĆ M, et al. Development of ADAS perception applications in ROS and" Software-In-the-Loop" validation with Carla simulator[J]. Telfor Journal, 2020, 12(1): 40-45. |
[1] | Xiaocong Zhao,Shiyu Fang,Zirui Li,Jian Sun. Extraction and Application of Key Utility Term for Social Driving Interaction [J]. Automotive Engineering, 2024, 46(2): 230-240. |
[2] | Yanli Ma, Qin Qin, Fangqi Dong, Yining Lou. Takeover Risk Assessment Model Based on Risk Field Theory Under Different Cognitive Secondary Tasks [J]. Automotive Engineering, 2024, 46(1): 9-17. |
[3] | Zhaolin Li,Huawei Li,Sifa Zheng,Wenwei Wang,Guangcai Zou,Chuang Zhang,Ying Liu,Yongchang Zhang. Research Progress on Key Technologies of Basic Software and Hardware for Intelligent New Energy Vehicle Onboard Control [J]. Automotive Engineering, 2023, 45(9): 1530-1542. |
[4] | Ming Wang,Xiaolin Tang,Kai Yang,Guofa Li,Xiaosong Hu. A Motion Planning Method for Autonomous Vehicles Considering Prediction Risk [J]. Automotive Engineering, 2023, 45(8): 1362-1372. |
[5] | Dongyu Zhao, Shuen Zhao. Autonomous Driving 3D Object Detection Based on Cascade YOLOv7 [J]. Automotive Engineering, 2023, 45(7): 1112-1122. |
[6] | Jiahao Zhao,Zhiquan Qi,Zhifeng Qi,Hao Wang,Lei He. Calculation of Heading Angle of Parallel Large Vehicle Based on Tire Feature Points [J]. Automotive Engineering, 2023, 45(6): 1031-1039. |
[7] | Lisheng Jin,Guangde Han,Xianyi Xie,Baicang Guo,Guofeng Liu,Wentao Zhu. Review of Autonomous Driving Decision-Making Research Based on Reinforcement Learning [J]. Automotive Engineering, 2023, 45(4): 527-540. |
[8] | Zhongqiang Wu,Changxing Zhang. Distributed Charging Control of Electric Vehicles Considering Distribution Grid Load [J]. Automotive Engineering, 2023, 45(4): 598-608. |
[9] | Qingyang Huang,Xiaoping Jin,Yikang Zhang. Analysis of Drivers' Driving Posture Change Rule Under the Condition of Automatic Driving Level Improvement [J]. Automotive Engineering, 2023, 45(3): 382-392. |
[10] | Zhengfa Liu,Ya Wu,Peigen Liu,Rongqi Gu,Guang Chen. Cross-Domain Object Detection for Intelligent Driving Based on Joint Distribution Matching of Features and Labels [J]. Automotive Engineering, 2023, 45(11): 2082-2091. |
[11] | Jie Li,Xiaodong Wu,Min Xu,Yonggang Liu. Reinforcement Learning Based Multi-objective Eco-driving Strategy in Urban Scenarios [J]. Automotive Engineering, 2023, 45(10): 1791-1802. |
[12] | Chunyang Qi,Chuanxue Song,Shixin Song,Liqiang Jin,Da Wang,Feng Xiao. Research on Energy Management Strategy for Hybrid Electric Vehicles Based on Inverse Reinforcement Learning [J]. Automotive Engineering, 2023, 45(10): 1954-1964. |
[13] | Pulei Xu,Yingfeng Cai,Yubo Lian,Xiaoqiang Sun,Hai Wang,Long Chen,Yilin Zhong. AFS/DYC Coordinated Control of Intelligent Vehicles Based on Improved Hierarchical Extensibility Theory [J]. Automotive Engineering, 2023, 45(1): 20-31. |
[14] | Runhui Huang,Likun Hu,Mingfang Su,Daye Xu,Aoran Chen. Semantic Segmentation Method of LiDAR Point Cloud Based on 3D Conical Grid [J]. Automotive Engineering, 2022, 44(8): 1173-1182. |
[15] | Zhenhai Gao,Xiangtong Yan,Fei Gao. A Decision-making Method for Longitudinal Autonomous Driving Based on Inverse Reinforcement Learning [J]. Automotive Engineering, 2022, 44(7): 969-975. |