1 |
卢春房, 张航, 陈明玉. 新时代背景下的交通运输高质量发展[J]. 中国公路学报, 2021,34(6): 1-9.
|
|
LU C F, ZHANG H, CHENG M Y. Realization of high-quality development of transportation in the new era [J]. China Journal of Highway and Transport, 2021,34(6): 1-9.
|
2 |
ZHOU N, PRICE L, YANDE D, et al. A roadmap for China to peak carbon dioxide emissions and achieve a 20% share of non-fossil fuels in primary energy by 2030[J]. Applied Energy, 2019, 239: 793-819.
|
3 |
SHU X, YANG W, GUO Y, et al. A reliability study of electric vehicle battery from the perspective of power supply system[J]. Journal of Power Sources, 2020, 451: 227805.
|
4 |
WANG C Y, ZHANG G, GE S, et al. Lithium-ion battery structure that self-heats at low temperatures[J]. Nature, 2016, 529(7587): 515-518.
|
5 |
WANG R, ZHAO X, WANG W, et al. What factors affect the public acceptance of new energy vehicles in underdeveloped regions? a case study of Gansu province, China[J]. Journal of Cleaner Production, 2021, 318: 128432.
|
6 |
陈德海, 任永昌, 黄艳国,等. 基于改进 PSO-RBF 算法的纯电动汽车剩余里程实时预测[J]. 汽车工程, 2018, 40(7): 764-769.
|
|
CHENG D H, REN Y C, HUANG Y G, et al. Real time prediction for remaining mileage of battery electric vehicle based on modified PSO-RBF algorithm [J]. Automotive Engineering, 2018, 40(7): 764-769.
|
7 |
田慧欣, 李晓宇, 刘芳. 基于地图信息和循环 SVR 模型的纯电动汽车续驶里程预测[J]. 汽车工程, 2020, 42(9): 1174-1182.
|
|
TIAN H X, LI X Y, LIU F. Prediction of continued driving range of battery electric vehicle based on map information and cyclic SVR model [J]. Automotive Engineering, 2020, 42(9): 1174-1182.
|
8 |
YAVASOGLU H A, TETIK Y E, GOKCE K. Implementation of machine learning based real time range estimation method without destination knowledge for BEVs[J]. Energy, 2019, 172: 1179-1186.
|
9 |
AYEVIDE F K, KELOUWANI S, AMAMOU A, et al. Estimation of a battery electric vehicle output power and remaining driving range under subfreezing conditions[J]. Journal of Energy Storage, 2022, 55: 105554.
|
10 |
BI J, WANG Y, SAI Q, et al. Estimating remaining driving range of battery electric vehicles based on real-world data: a case study of Beijing, China[J]. Energy, 2019, 169: 833-843.
|
11 |
WEI H, HE C, LI J, et al. Online estimation of driving range for battery electric vehicles based on SOC-segmented actual driving cycle[J]. Journal of Energy Storage, 2022, 49: 104091.
|
12 |
LIPU M S H, HANNAN M A, HUSSAIN A, et al. Real-time state of charge estimation of lithium-ion batteries using optimized random forest regression algorithm[J]. IEEE Transactions on Intelligent Vehicles, 2022, 8(1): 639-648.
|
13 |
HUANG H, MENG J, WANG Y, et al. An enhanced data-driven model for lithium-ion battery state-of-health estimation with optimized features and prior knowledge[J]. Automotive Innovation, 2022, 5(2): 134-145.
|
14 |
WU X, LI M, DU J, et al. SOC prediction method based on battery pack aging and consistency deviation of thermoelectric characteristics[J]. Energy Reports, 2022, 8: 2262-2272.
|
15 |
ZHONG W, CHEN X, WU Q, et al. Selection of diverse features with a diverse regularization[J]. Pattern Recognition, 2021, 120: 108154.
|
16 |
胡杰, 翁灵隆, 覃雄臻,等. 基于多模型融合的电动汽车行驶里程预测[J]. 交通运输系统工程与信息, 2020, 20(5): 100-106,141.
|
|
HU J, WENG L L, QIN X Z, et al. Mileage prediction of electric vehicle based on multi model fusion [J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(5): 100-106,141.
|
17 |
LI X, HUA W, WU C, et al. State estimation of a lithium-ion battery based on multi-feature indicators of ultrasonic guided waves[J]. Journal of Energy Storage, 2022, 56: 106113.
|
18 |
ZOU D, MENG D, DAI Y, et al. Optimal charging strategy of electric vehicles with consideration of battery storage[C]. E3S Web of Conferences. EDP Sciences, 2021, 236: 02015.
|
19 |
ANDRE D, MEILER M, STEINER K, et al. Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. I. Experimental investigation[J]. Journal of Power Sources, 2011, 196(12): 5334-5341.
|
20 |
HE H, XIONG R, GUO H. Online estimation of model parameters and state-of-charge of LiFePO4 batteries in electric vehicles[J]. Applied Energy, 2012, 89(1): 413-420.
|
21 |
PENG H, LONG F, DING C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(8): 1226-1238.
|
22 |
WANG X, JIN Y, SCHMITT S, et al. Recent advances in Bayesian optimization[J]. ACM Computing Surveys, 2023, 55(13s): 1-36.
|
23 |
NAIMI A I, BALZER L B. Stacked generalization: an introduction to super learning[J]. European Journal of Epidemiology, 2018, 33: 459-464.
|
24 |
CHEN T, GUESTRIN C. Xgboost: a scalable tree boosting system[C]. Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, 2016: 785-794.
|
25 |
BREIMAN L. Random forests[J]. Machine Learning, 2001, 45: 5-32.
|
26 |
FU F, JIANG J, SHAO Y, et al. An experimental evaluation of large scale GBDT systems[J]. arXiv preprint arXiv:, 2019.
|
27 |
CRISTIANINI N, SHAWE-TAYLOR J. An introduction to support vector machines and other kernel-based learning methods[M]. Cambridge University Press, 2000.
|
28 |
DING S, SU C, YU J. An optimizing BP neural network algorithm based on genetic algorithm[J]. Artificial Intelligence Review, 2011, 36: 153-162.
|
29 |
SALEH A K M E, ARASHI M, KIBRIA B M G. Theory of ridge regression estimation with applications[M]. John Wiley & Sons, 2019.
|
30 |
LEE J H, SHI Z, GAO Z. On LASSO for predictive regression[J]. Journal of Econometrics, 2022, 229(2): 322-349.
|