Automotive Engineering ›› 2024, Vol. 46 ›› Issue (8): 1431-1446.doi: 10.19562/j.chinasae.qcgc.2024.08.010
Kun Qian,Ke Liu,Yanfu Wang,Haoyang Li,Jing Tan,Zhenghua Shen,Xikang Du,Jiying Duan,Jian Zhao()
Received:
2024-02-17
Revised:
2024-03-27
Online:
2024-08-25
Published:
2024-08-23
Contact:
Jian Zhao
E-mail:jzhao@dlut.edu.cn
Kun Qian,Ke Liu,Yanfu Wang,Haoyang Li,Jing Tan,Zhenghua Shen,Xikang Du,Jiying Duan,Jian Zhao. Progress in Research on Interior Sound Quality Evaluation of Electric Vehicles[J].Automotive Engineering, 2024, 46(8): 1431-1446.
"
序号 | 局限因素 | 具体表现 |
---|---|---|
1 | 声品质因素 | 声品质与频率内容和动态特性有关,而A声级只能提供总体的声强信息,无法提供声品质的详细信息,如谐波成分、突发声事件等。 |
2 | 频率响应因素 | A声级能在一定程度上反映人耳对声音的响应,但这是基于对典型成人正常听力的平均响应曲线。并不完全适用于所有听众,也不可能准确地反映个体对于不同频率的敏感性差异。 |
3 | 心理声学因素 | 声音的感知还包含心理和情感反应。人们对声音的评价可能受到主观感受的影响,而通过客观测量得到的A声级无法捕捉到这些心理声学因素。 |
4 | 复杂声环境因素 | 实际道路条件下,电动汽车受到包括车速、道路表面、背景噪声等在内的多种因素影响。A声级无法准确反映这些复杂情境下的声品质。 |
5 | 动态特性因素 | A声级通常是一个时域内的平均值,不能有效地反映电动汽车可能具有的明显动态变化,例如汽车加速时的声音变化。 |
"
模型 | 优势 | 适用场景 |
---|---|---|
传统机器学习模型 | 容易解释,适合处理小规模数据集,计算效率高。 | 适合于数据量不大、特征较少且需要模型可解释性强的车内声品质评价场景。 |
人工神经网络模型 | 擅长捕捉数据中的复杂模式,适合于非线性问题。 | 在有足够数据支持的情况下,适用于需要高度非线性建模的电动汽车车内声品质评价。 |
集成学习模型 | 通常比单一模型有更高的预测准确性,能有效处理各种数据类型,具有较好的泛化能力。 | 适用于中等规模的数据集,须平衡准确性和模型复杂度的电动汽车车内声品质评价。 |
深度学习模型 | 在处理大规模复杂数据(如图像、声音)时表现出色,能够自动提取和学习特征。 | 在有大量数据和足够计算资源的情况下,适用于复杂的电动汽车车内声品质评价问题,尤其是在处理音频、振动等多模态数据时。 |
1 | WANG Y Q, ZHANG S, MENG D J, et al. Nonlinear overall annoyance level modeling and interior sound quality prediction for pure electric vehicle with extreme gradient boosting algorithm[J]. Applied Acoustics, 2022, 195. |
2 | GWAK D Y, YOON K, SEONG Y, et al. Subjective evaluation of additive sound designed to reinforce acoustic feedback of electric vehicle[C]. 43rd International Congress on Noise Control Engineering: Improving the World Through Noise Control, 2014. |
3 | YAMAUCHI K, DAN M, CIOFFI F, et al. Perceptual difference on HVAC sound quality between electric and conventional vehicles[C]. 50th International Congress and Exposition of Noise Control Engineering, 2021. |
4 | 陈凡. 电动汽车与燃油汽车的低速噪声对比研究 [J]. 汽车实用技术, 2021, 46(21): 12-14. |
CHEN F. Comparative research on noise of electric vehicle and fuel vehicle at low speed[J]. Automobile Applied Technology, 2021, 46(21): 12-14. | |
5 | FANG Y, ZHANG T, CHEN F F, et al. A subjective and objective evaluation model for psychoacoustical quality of electric vehicle noise[J]. Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2015, 49(8): 97-101. |
6 | 钱堃. 电动汽车声品质评价分析与控制技术研究[D]. 长春:吉林大学, 2017. |
QIAN K. Research on sound quality evaluation and control technology of electric vehicles[D]. Changchun: Jilin University, 2017. | |
7 | QIAN K, HOU Z C, SUN D K, et al. Objective evaluation of noise in electric vehicles during acceleration based on psychoacoustics[C]. 49th International Congress and Exposition on Noise Control Engineering, 2020. |
8 | 王永超, 顾灿松, 陈达亮. 纯电动汽车声品质评价及电磁噪声分析 [J]. 汽车实用技术, 2018(4): 3-6. |
WANG Y C, GU C S, CHEN D L. Analysis of sound quality and electromagnetic noise for electric vehicle[J]. Automobile Applied Technology, 2018(4): 3-6. | |
9 | 胡腾, 陆益民. 电动汽车声品质的评价分析及建模 [J]. 汽车技术, 2016(3): 26-30. |
HU T, LU Y M. Evaluation and modeling of sound quality for electric vehicle[J]. Automobile Technology, 2016(3): 26-30. | |
10 | 黄宇. 纯电动汽车车内噪声品质评价研究[D]. 天津:天津大学, 2022. |
HUANG Y. Research on the evaluation of interior sound quality of pure electric vehicle[D]. Tianjin: Tianjin University, 2022. | |
11 | 刁坤, 汪晓虎, 王伟东. 电动汽车电驱动噪声声品质主客观评价模型 [J]. 噪声与振动控制, 2021, 41(3): 187-191,203. |
DIAO K, WANG X H, WANG W D. Subjective and objective evaluation model of sound quality of drive unit tonal noise of electric vehicles[J]. Noise and Vibration Control, 2021, 41(3): 187-191,203. | |
12 | 陈克, 王钟缘. 基于主成分回归的电动汽车声品质满意度预测 [J]. 汽车实用技术, 2023, 48(14): 19-23. |
CHEN K, WANG Z Y. Satisfaction degree prediction of electric vehicle sound quality based on principal component regressione[J]. Automobile Applied Technology, 2023, 48(14): 19-23. | |
13 | KIM S Y, RYU S C, JUN Y D, et al. Methodology for sound quality analysis of motors for automotive interior parts through subjective evaluation[J]. Sensors, 2022, 22(18). |
14 | HUANG H B, WU J H, HUANG X R, et al. The development of a deep neural network and its application to evaluating the interior sound quality of pure electric vehicles[J]. Mechanical Systems and Signal Processing, 2019, 120: 98-116. |
15 | MA C G, LI Q, DENG L W, et al. A novel sound quality evaluation method of the diagnosis of abnormal noise in interior permanent-magnet synchronous motors for electric vehicles[J]. IEEE Transactions on Industrial Electronics, 2017, 64(5): 3883-3891. |
16 | MA C G, LI Q, LIU Q H, et al. Sound quality evaluation of noise of hub permanent-magnet synchronous motors for electric vehicles[J]. IEEE Transactions on Industrial Electronics, 2016, 63(9): 5663-5673. |
17 | 中华人民共和国公安部. 机动车运行安全技术条件: GB 7258—2017[S]. 北京: 国家市场监督管理总局, 中国国家标准化管理委员会, 2017. |
Ministry of Public Security of the People's Republic of China. Technical specifications for safety of power-driven vehicles operating on roads: GB 7258—2017[S]. Beijing: State Administration for Maket Regulation, Standardization Administration of China, 2017. | |
18 | 中国科学院. 声学 汽车车内噪声测量方法: GB/T 18697—2002[S]. 北京: 中华人民共和国国家质量监督检验检疫总局, 2002. |
Chinese Academy of Sciences. Acoustics-measurement of noise inside motor vehicles: GB/T 18697—2002[S]. Beijing: General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, 2002. | |
19 | LIN C J, WANG S L, MOALLEM M, et al. Analysis of vibration in permanent magnet synchronous machines due to variable speed drives[J]. IEEE Transactions on Energy Conversion, 2016, 32(2): 582-590. |
20 | MOSQUERA-SANCHEZ J A, SARRAZIN M, JANSSENS K, et al. Multiple target sound quality balance for hybrid electric powertrain noise[J]. Mechanical Systems and Signal Processing, 2018, 99: 478-503. |
21 | MA C G, LIU Q H, WANG D F, et al. A novel black and white box method for diagnosis and reduction of abnormal noise of hub permanent-magnet synchronous motors for electric vehicles[J]. IEEE Transactions on Industrial Electronics, 2015, 63(2): 1153-1167. |
22 | MA C G, ZUO S G. Black-box method of identification and diagnosis of abnormal noise sources of permanent magnet synchronous machines for electric vehicles[J]. IEEE Transactions on Industrial Electronics, 2014, 61(10): 5538-5549. |
23 | 贾艳宾, 闫硕. 纯电动汽车车内中低频噪声优化研究 [J]. 上海汽车, 2021(10): 4-7,13. |
JIA Y B, YAN S. Research on the optimization of medium and low frequency noise in pure electric vehicles[J]. Shanghai Auto, 2021(10): 4-7,13. | |
24 | ZUO S G, LIN F, WU X D. Noise analysis, calculation, and reduction of external rotor permanent-magnet synchronous motor[J]. IEEE Transactions on Industrial Electronics, 2015, 62(10): 6204-6212. |
25 | TORREGROSSA D, PEYRAUT F, FAHIMI B, et al. Multiphysics finite-element modeling for vibration and acoustic analysis of permanent magnet synchronous machine[J]. IEEE Transactions on Energy Conversion, 2010, 26(2): 490-500. |
26 | TORREGROSSA D, KHOOBROO A, FAHIMI B. Prediction of acoustic noise and torque pulsation in PM synchronous machines with static eccentricity and partial demagnetization using field reconstruction method[J]. IEEE Transactions on Industrial Electronics, 2011, 59(2): 934-944. |
27 | SUNG S J, JANG G H, JANG J W, et al. Vibration and noise in a HDD spindle motor arising from the axial UMF ripple[J]. IEEE Transactions on Magnetics, 2013, 49(6): 2489-2494. |
28 | PARK S, KIM W, KIM S I. A numerical prediction model for vibration and noise of axial flux motors[J]. IEEE Transactions on Industrial Electronics, 2014, 61(10): 5757-5762. |
29 | ISLAM M S, ISLAM R, SEBASTIAN T. Noise and vibration characteristics of permanent-magnet synchronous motors using electromagnetic and structural analyses[J]. IEEE Transactions on Industry Applications, 2014, 50(5): 3214-3222. |
30 | CASSAT A, ESPANET C, COLEMAN R, et al. A practical solution to mitigate vibrations in industrial PM motors having concentric windings[J]. IEEE Transactions on Industry Applications, 2012, 48(5): 1526-1538. |
31 | BRACIKOWSKI N, HECQUET M, BROCHET P, et al. Multiphysics modeling of a permanent magnet synchronous machine by using lumped models[J]. IEEE Transactions on Industrial Electronics, 2011, 59(6): 2426-2437. |
32 | SWART D J, BEKKER A. Interior and motorbay sound quality evaluation of full electric and hybrid-electric vehicles based on psychoacoustics[C]. 45th International Congress and Exposition on Noise Control Engineering: Towards a Quieter Future, 2016: 5400-5410. |
33 | MA C G, CHEN C Y, LIU Q H, et al. Sound quality evaluation of the interior noise of pure electric vehicle based on neural network model[J]. IEEE Transactions on Industrial Electronics, 2017, 64(12): 9442-9450. |
34 | QIAN K, HOU Z C. Intelligent evaluation of the interior sound quality of electric vehicles[J]. Applied Acoustics, 2021, 173. |
35 | HUANG H B, WU J H, LIM T C, et al. Pure electric vehicle nonstationary interior sound quality prediction based on deep CNNs with an adaptable learning rate tree[J]. Mechanical Systems and Signal Processing, 2021, 148. |
36 | HUANG X, QIU Z Z, WANG F, et al. Evaluation of objective sound quality feature extraction with kernel principal component method in electric drive system[C]. 2022 Society of Automotive Engineers - China Congress, 2023: 277-287. |
37 | FANG Y, ZHANG T. Sound quality investigation and improvement of an electric powertrain for electric vehicles[J]. IEEE Transactions on Industrial Electronics, 2018, 65(2): 1149-1157. |
38 | 王钟缘. 电动汽车车内声品质评价及电磁噪声分析[D]. 沈阳:沈阳理工大学, 2023. |
WANG Z Y. Internal sound quality evaluation and electromagnetic noise analysis of electric vehicle[D]. Shenyang: Shenyang Ligong University, 2023. | |
39 | ZHANG E L, CHEN Y, CHEN X Y, et al. High-precision modeling and prediction of acoustic comfort for electric bus based on BPNN and XGBoost[J]. International Journal of Acoustics and Vibration, 2023, 28(2): 158-164. |
40 | HUANG H B, LIM T C, WU J H, et al. Multitarget prediction and optimization of pure electric vehicle tire/road airborne noise sound quality based on a knowledge- and data-driven method[J]. Mechanical Systems and Signal Processing, 2023, 197. |
41 | LIAO L Y, ZUO Y Y, MENG H D. Research on the interior sound quality in hybrid electric vehicle[C]. International Conference on Mechatronic, Manufacturing and Materials Engineering (MMME), 2016. |
42 | LU Y, ZUO Y Y, WANG H, et al. Sound quality prediction for power coupling mechanism of HEV based on CEEMD-HT and RVM[J]. Neural Computing & Applications, 2021, 33(14): 8201-8216. |
43 | ZHANG X C, CHENG J, LU J W, et al. Sound quality evaluation of pure electric vehicle with subjective and objective unified evaluation method[J]. International Journal of Vehicle Design, 2022, 88(2-4): 283-303. |
44 | XIE X P, WEN Z J. Sound quality prediction of unsteady vehicle interior sound[J]. International Journal of Vehicle Noise and Vibration, 2023, 19(1-2): 55-66. |
45 | 张京京. 内置式永磁同步电机电磁噪声的声品质评价[D]. 哈尔滨:哈尔滨工业大学, 2022. |
ZHANG J J. Sound quality evaluation of electromagnetic noise of interior permanent magnet synchronous motors[D]. Harbin: Harbin Institute of Technology, 2022. | |
46 | 左言言, 宋文兵, 陆怡, 等. 基于LSSVM-样本熵的车内噪声声品质预测 [J]. 江苏大学学报(自然科学版), 2020, 41(1): 1-7. |
ZUO Y Y, SONG W B, LU Y, et al. Interior noise sound quality prediction based on least square support vector machine-sample entropy[J]. Journal of Jiangsu University(Natural Science Edition), 2020, 41(1): 1-7. | |
47 | 毕凤荣, 黄宇, 张立鹏, 等. 基于区间灰数理论的汽车声品质主观评价方法研究 [J]. 汽车工程, 2020, 42(7): 933-940. |
BI F R, HUANG Y, ZHANG L P, et al. Research on subjective evaluation method of vehicle sound quality based on interval grey number theory[J]. Automotive Engineering, 2020, 42(7): 933-940. | |
48 | 刘松, 陈克, 王楷焱. 基于IGWO-BP神经网络的车内声品质预测 [J]. 沈阳理工大学学报, 2023, 42(5): 88-94. |
LIU S, CHEN K, WANG K Y. Study on prediction for acoustic quality of vehicle based on IGWO-BP neural network[J]. Journal of Shenyang Ligong University, 2023, 42(5): 88-94. | |
49 | 邱子桢, 陈勇, 康洋, 等. 电动汽车驱动永磁同步电机声品质预测研究 [J]. 噪声与振动控制, 2020, 40(2): 146-151. |
QIU Z Z, CHEN Y, KANG Y, et al. Sound quality prediction for permanent magnet synchronous motors used in electric vehicles[J]. Noise and Vibration Control, 2020, 40(2): 146-151. | |
50 | 郝天一, 杨晋, 刘海, 等. 新能源电动汽车稳态工况车内声品质客观评价特征提取 [J]. 噪声与振动控制, 2023, 43(1): 179-184. |
HAO T Y, YANG J, LIU H, et al. Extraction of objective evaluation characteristics of electric vehicle interior sound quality[J]. Noise and Vibration Control, 2023, 43(1): 179-184. | |
51 | 莫愁, 陈吉清, 兰凤崇. 着眼于主观烦扰度的混合动力汽车声品质评价方法研究 [J]. 汽车工程, 2015, 37(11):1334-1338,1358. |
MO C, CHEN J Q, LAN F C. A study on sound quality evaluation method for hybrid electric vehicles focusing on subjective annoyance[J]. Automotive Engineering, 2015, 37(11): 1334-1338,1358. | |
52 | 王博, 王海文, 江祖毅, 等. 一种永磁同步电机声品质主观评价方法研究 [J]. 汽车工程学报, 2022, 12(1): 90-97. |
WANG B, WANG H W, JIANG Z Y, et al. Study on subjective evaluation method of sound quality for permanent magnet synchronous motors[J]. Chinese Journal of Automotive Engineering, 2022, 12(1): 90-97. | |
53 | 周浩. 基于小波神经网络的车内声品质预测研究[D]. 长沙:湖南大学, 2020. |
ZHOU H. Research on prediction of vehicle inner sound quality based on wavelet neural network[D]. Changsha: Hunan University, 2020. | |
54 | 刘哲, 高云凯, 解馥荣. 电动汽车关门声品质预测模型研究 [J]. 汽车工程, 2021, 43(12): 1858-1864. |
LIU Z, GAO Y K, XIE F R. Study on predictive models for door slamming sound quality of an electric vehicle[J]. Automotive Engineering, 2021, 43(12): 1858-1864. | |
55 | 刘松, 陈克. 车内声品质主客观评价分析 [J]. 内燃机与配件, 2023(13): 1-3. |
LIU S, CHEN K. Main and objective evaluation and analysis of interior sound quality[J]. Internal Combustion Engine and Parts, 2023(13): 1-3. | |
56 | 徐求福. 基于多物理场耦合的永磁同步电机声品质优化研究[D]. 镇江:江苏大学, 2023. |
XU Q F. Research on sound quality optimization of permanent magnet synchronous motor based on multi physical field couping[D]. Zhenjiang: Jiangsu University, 2023. | |
57 | 商志豪. 基于声品质的全工况电动汽车警示音研究[D]. 镇江:江苏大学, 2022. |
SHANG Z H. Research on the warning sound of electric vehicles in all working conditions based on sound quality[D]. Zhenjiang: Jiangsu University, 2022. | |
58 | ZHANG E L, CHEN X Y, LI S Y, et al. A comprehensive evaluation model of electric bus interior acoustic comfort and its application[J]. International Journal of Acoustics and Vibration, 2022, 27(4): 361-366. |
59 | HUANG H B, HUANG X R, WU J H, et al. Novel method for identifying and diagnosing electric vehicle shock absorber squeak noise based on a DNN[J]. Mechanical Systems and Signal Processing, 2019, 124: 439-458. |
60 | 曹蕴涛, 汤乐超, 刘英杰. 电动汽车低速提示音系统的法规适应性研究 [J]. 汽车工程, 2020, 42(8): 1110-1116,1138. |
CAO Y T, TANG L C, LIU Y J. Research on regulation adaptation for acoustic vehicle alerting system in electric vehicles[J]. Automotive Engineering, 2020, 42(8): 1110-1116,1138. | |
61 | 赵海军, 梁凯, 周辉, 等. 低速电动乘用车声品质主观评价及改进 [J]. 现代制造技术与装备, 2017(2): 12-13,16. |
ZHAO H J, LIANG K, ZHOU H, et al. Sound quality subjective evaluation and improvement of electric passenger vehicle with low speed[J]. Modern Manufacturing Technology and Equipment, 2017(2): 12-13,16. | |
62 | 朱宇. 纯电动汽车车内声品质分析评价研究[D]. 长春:吉林大学, 2013. |
ZHU Y. Research on analysis and evaluation of vehicle interior sound quality for pure electric vehicle[D]. Changchun: Jilin University, 2013. | |
63 | ZHAI J C, MA C G. Sound quality evaluation of centralized drive PMSM based on grade scoring method[C]. 2017 SAE World Congress Experience, 2017. |
[1] | Rong Cao,Junwei Hua,Yongcheng Li,Fangli Guo,Wenbin Hou. Intelligent Design and Analysis of Body Structure Based on Data Drive [J]. Automotive Engineering, 2024, 46(7): 1273-1281. |
[2] | Longfei Ma,Baoqun Zhang,Liyong Wang,Jiani Zeng,Ran Jiao,Cheng Gong. Research on Participation of Electric Vehicles in Microgrid Load Power Fluctuation Mitigation Based on Digital Twin Hybrid Energy Storage [J]. Automotive Engineering, 2024, 46(6): 1045-1053. |
[3] | Tianyang Yang,Huiming Zou,Hui Zhou,Chunlei Wang,Changqing Tian. Research on the Adaptability of CO2 Ejector Under Automotive Conditions Ranging from -30 to 50 ℃ [J]. Automotive Engineering, 2024, 46(4): 682-690. |
[4] | Lü Hui,Jiaming Zhang,Xiaoting Huang,Wenbin Shangguan. Reliability Optimization for the Powertrain Mounting System Based on Probability Model and Data-Driven Model [J]. Automotive Engineering, 2024, 46(3): 456-463. |
[5] | Long Shen,Jun Zhang,Bin Qin. Analysis and Improvement of Low Frequency Noise Caused by Rear Cavity of Chassis in High Speed Condition of Electric Vehicle [J]. Automotive Engineering, 2024, 46(3): 520-525. |
[6] | Nianzhong Zhang,Qiang Song,Guanfeng Wang,Mingsheng Wang. Research on Non-Current-Sensor Control of Permanent Magnet Synchronous Motor for Vehicle [J]. Automotive Engineering, 2024, 46(2): 281-289. |
[7] | Zhipeng Jiao, Jian Ma, Xuan Zhao, Kai Zhang, Dean Meng, Qi Han, Zhao Zhang. Research on Short-Time Test Cycle and Method Based on Electric Vehicle Braking Safety Detection [J]. Automotive Engineering, 2024, 46(1): 109-119. |
[8] | Jiangxin Yuan, Liping He, Yaodong Li, Gang Li. Thermal Analysis and Optimization Design of a BMS Slave Unit for Electric Vehicles [J]. Automotive Engineering, 2024, 46(1): 128-138. |
[9] | Pengbo Zhang, Renxiang Chen, Yiming Shao, Shizheng Sun, Kaibo Yan. Research Review of Fault Diagnosis for Electric Drive Powertrain System of Pure Electric Vehicles [J]. Automotive Engineering, 2024, 46(1): 61-74. |
[10] | Da Li,Junjun Deng,Zhaosheng Zhang,Peng Liu,Zhenpo Wang. Review on Power Battery Safety Warning Strategy in Electric Vehicles [J]. Automotive Engineering, 2023, 45(8): 1392-1407. |
[11] | Yilin He,Jian Ma,Shukai Yang,Wei Zheng,Qifan Xue. Research on Stability Model Predictive Control of Intelligent Electric Vehicle with Preview Characteristics [J]. Automotive Engineering, 2023, 45(5): 719-734. |
[12] | Haiqiang Liang,Hongwen He,Kangwei Dai,Bo Pang,Peng Wang. Research on Lithium Ion Battery Life Prediction Method Based on Empirical Aging Model and Mechanism Model for Electric Vehicles [J]. Automotive Engineering, 2023, 45(5): 825-835. |
[13] | Yapeng Li,Xiaolin Tang,Xiaosong Hu. Study on Eco-driving of PHEVS Based on Hierarchical Control Strategy [J]. Automotive Engineering, 2023, 45(4): 551-560. |
[14] | Zhongqiang Wu,Changxing Zhang. Distributed Charging Control of Electric Vehicles Considering Distribution Grid Load [J]. Automotive Engineering, 2023, 45(4): 598-608. |
[15] | Zhiheng Wu,Aimin Liu. Switching Functional Hybrid Control Strategy for Permanent Magnet Synchronous Motor of Electric Vehicle [J]. Automotive Engineering, 2023, 45(4): 619-627. |
|