[1] MOON S, GAO Y, PARK S, et al. Effect of the number and position of nozzle holes on in-and near-nozzle dynamic characteristics of diesel injection[J]. Fuel,2015,150:112-122. [2] MOHAN B, YANG W, YU W. Effect of internal nozzle flow and thermo-physical properties on spray characteristics of methyl esters[J]. Applied Energy,2014,129:123-134. [3] SOID S N, ZAINAL Z A. Spray and combustion characterization for internal combustion engines using optical measuring techniques-A review[J]. Energy,2011,36(2):724-741. [4] SOM S, RAMIREZ A I, LONGMAN D E, et al. Effect of nozzle orifice geometry on spray, combustion, and emission characteristics under diesel engine conditions[J]. Fuel,2011,90(3):1267-1276. [5] 魏明锐,沃傲波,文华.燃油喷雾初始破碎及二次雾化机理的研究[J].内燃机学报,2009,27(2):128-133. [6] SUH H K, LEE C S. Effect of cavitation in nozzle orifice on the diesel fuel atomization characteristics[J]. International Journal of Heat and Fluid Flow,2008,29(4):1001-1009. [7] 高永强,魏明锐,颜伏伍,等.喷孔几何特征对孔内流动及近孔区域燃油雾化的影响[J].农业机械学报,2016,47(12):347-353. [8] HE Z, GUO G, TAO X, et al. Study of the effect of nozzle hole shape on internal flow and spray characteristics[J]. International Communications in Heat & Mass Transfer,2016,71:1-8. [9] WANG F, HE Z, LIU J, et al. Diesel nozzle geometries on spray characteristics a spray model coupled with nozzle cavitating flow[J]. International Journal of Automotive Technology,2015,16(4):539-549. [10] 何志霞,柏金,王谦,等.柴油机喷嘴内空穴流动可视化试验与数值模拟[J].农业机械学报,2011,42(11):6-9. [11] CHEN Y H, HE Z X, CHEN X B, et al. Experimental study of cavitating flow inside enlarged transparent injector nozzles and its effect on spray[J]. Advanced Materials Research,2014,945-949:935-939. [12] 王忠远,孙剑,董庆兵,等.柴油机喷孔内部空化效应的可视化实验研究[J].燃烧科学与技术,2012,18(3):280-287. [13] KOUKOUVINIS P, GAVAISES M, LI J, et al. Large eddy simulation of diesel injector including cavitation effects and correlation to erosion damage[J]. Fuel,2016,175:26-39. [14] HE Z, CHEN Y, LENG X, et al. Experimental visualization and LES investigations on cloud cavitation shedding in a rectangular nozzle orifice[J]. International Communications in Heat and Mass Transfer,2016,76:108-116. [15] CUI J, LAI H, FENG K, et al. Quantitative analysis of the minor deviations in nozzle internal geometry effect on the cavitating flow[J]. Experimental Thermal and Fluid Science,2018,94(6):89-98. [16] MOON S, GAO Y, PARK S, et al. Effect of the number and position of nozzle holes on in-and near-nozzle dynamic characteristics of diesel injection[J]. Fuel,2015,150:112-122. [17] HE Z, ZHANG Z, GUO G, et al. Visual experiment of transient cavitating flow characteristics in the real-size diesel injector nozzle[J]. International Communications in Heat and Mass Transfer 2016,78:13-20. [18] TAO Q, XIN S, YAN L, et al. Influence of inlet pressure on cavitation flow in diesel nozzle[J]. Applied Thermal Engineering,2016,109:364-372. [19] MITROGLOU N, STAMBOLIYSKI V, KARATHANASSIS I K, et al. Cloud cavitation vortex shedding inside an injector nozzle[J]. Experimental Thermal and Fluid Science,2017,84:179-189. [20] 高永强,魏明锐,LI Fan,等.喷孔空化特性和近孔初始射流结构研究[J].农业机械学报,2017,48(9):369-376. [21] JIANG G, ZHANG Y, WEN H, et al. Study of the generated density of cavitation inside diesel nozzle using different fuels and nozzles[J]. Energy Conversion and Management,2015,103:208-217. [22] SERRAS-PEREIRA J,VAN ROMUNDE, ALEIFERIS P G, et al. Cavitation, primary break-up and flash boiling of gasoline, iso-octane and n-pentane with a real-size optical direct-injection nozzle[J]. Fuel,2010,89(9):2592-2607. [23] ALEIFERIS P G, SERRAS-PEREIRA J, AUGOYE A, et al. Effect of fuel temperature on in-nozzle cavitation and spray formation of liquid hydrocarbons and alcohols from a real-size optical injector for direct-injection spark-ignition engines[J]. International Journal of Heat and Mass Transfer,2010,53(21):4588-4606. [24] BLESSING M, KÖNIG G, KRÜGER C, et al. Analysis of flow and cavitation phenomena in diesel injection nozzles and its effects on spray and mixture formation[C]. SAE Paper 2003-01-1358. |