1 |
张新钰,邹镇洪,李志伟,等.面向自动驾驶目标检测的深度多模态融合技术[J].智能系统学报,2020,15(4):758-771.
|
|
ZHANG Xinyu, ZOU Zhenhong, LI Zhiwei, et al. Deep multi-modal fusion in object detection for autonomous driving[J]. CAAI Transactions on Intelligent Systems, 2020, 15(4): 758–771.
|
2 |
ZHOU T, JIANG K, XIAO Z, et al. Object detection using multi-sensor fusion based on deep learning[C].19th COTA International Conference of Transportation Professionals, 2019.
|
3 |
VORA S, LANG A H, HELOU B, et al. Pointpainting: sequential fusion for 3D object detection[C].Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 4604-4612.
|
4 |
CHEN X, MA H, WAN J, et al. Multi-view 3D object detection network for autonomous driving[C].Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, 2017: 1907-1915.
|
5 |
QI C R, LIU W, WU C, et al. Frustum pointnets for 3D object detection from RGB-D data[C].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 918-927.
|
6 |
PANG S, MORRIS D, RADHA H. CLOCs: camera-LiDAR object candidates fusion for 3D object detection[C].2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2020: 10386-10393.
|
7 |
纪嘉树. 基于多传感器融合的无人驾驶环境感知技术研究[D].济南:山东大学,2022.
|
|
JI Jiashu. Research on environment perception technology of unmanned driving based on multi-sensor fusion[D]. Jinan:Shandong University, 2022.
|
8 |
甘耀东,郑玲,张志达,等.融合毫米波雷达与深度视觉的多目标检测与跟踪[J].汽车工程,2021,43(7):1022-1029,1056.DOI:10.19562/j.chinasae.qcgc.2021.07.009.
|
|
GAN Yaodong, ZHENG Ling, ZHANG Zhida, et al. Multi-target detection and tracking with fusion of millimeter-wave radar and deep vision[J]. Automotive Engineering, 2021,43(7):1022-1029,1056.DOI:10.19562/j.chinasae.qcgc.2021.07.009.
|
9 |
李哲,于梦茹.基于多种LBP特征集成学习的车标识别[J].计算机工程与应用,2019,55(20):134-138.
|
|
LI Zhe, YU Mengru. Vehicle-logo recognition based on ensemble learning with multiple LBP features[J]. Computer Engineering and Applications, 2019, 55(20):134-138.
|
10 |
王钦民,李宽,杨灿群.一种基于分类器投票的车牌定位方法[J].计算机工程与科学,2016,38(6):1200-1206.
|
|
WANG Qinmin, LI Kuan, YANG Canqun. A license plate location method based on classifier voting[J]. Computer Engineering & Science, 2016, 38(6): 1200-1206.
|
11 |
刘丽丽,周绍光,丁倩,等.基于最大投票融合的高光谱影像半监督分类[J].地理空间信息,2020,18(5):20-25,6.
|
|
LIU Lili, ZHOU Shaoguang, DING Qian,et al. Semi-supervised classification of hyperspectral images based on maximum voting fusion[J]. Geospatial Information, 2020, 18(5): 20-25,6.
|
12 |
李悦. 多传感器信息融合在刀具磨损在线监测中的应用研究[D].太原:太原科技大学,2020.
|
|
LI Yue. Research on application of multi-sensor information fusion in tool wear condition monitoring[D].Taiyuan :Taiyuan University of Science and Technology, 2020.
|
13 |
赵宏伟,何劲松.基于贝叶斯框架融合深度信息的显著性检测[J].光电工程,2018,45(2):13-20.
|
|
ZHAO Hongwei, HE Jinsong. Saliency detection method fused depth information based on Bayesian framework[J]. Opto-Electronic Engineering, 2018, 45(2): 13-20.
|
14 |
陈雪敏. 基于贝叶斯融合的图像显著性检测[D].天津:河北工业大学,2019.
|
|
CHEN Xuemin. Image saliency detection based on baytes integration[D]. Tianjin:Hebei University of Technology, 2019.
|
15 |
李伟,周靖,杜秀梅,等.基于D-S证据信息融合方法的全地形车行驶工况辨识[J].重庆大学学报,2022,45(3):1-11.
|
|
LI Wei, ZHOU Jing, DU Xiumei, et al.Driving condition identification of all-terrain vehicles based on D-S evidence information fusion method[J]. Journal of Chongqing University, 2022, 45(3): 1-11.
|
16 |
姬晓飞,石宇辰,王昱,等.D-S理论多分类器融合的光学遥感图像多目标识别[J].电子测量与仪器学报,2020,34(5):127-132.
|
|
JI Xiaofei, SHI Yuchen, WANG Yu, et al. D-S theory based multi-classifier fusion optical remote sensing image target recognition[J]. Journal of Electronic Measurement and Instrument, 2020, 34(5): 127-132.
|
17 |
SHAFER G. Dempster-shafer theory[J]. Encyclopedia of Artificial Intelligence, 1992, 1: 330-331.
|
18 |
周文文. 多分类器融合算法研究与仿真系统实现[D].南京:南京航空航天大学,2021.
|
|
ZHOU Wenwen. Research on multi-classifier fusion algorithm and realization of simulation system[D]. Nanjing :Nanjing University Of Aeronautics And Astronautics, 2021.
|
19 |
TURHAN H I, DEMIREKLER M, GUNAY M. A novel methodology for target classification based on dempster-shafer theory[C].Belief Functions: Theory and Applications: Third International Conference, BELIEF 2014, Oxford, UK, September 26-28, 2014. Proceedings 3. Springer International Publishing, 2014: 393-402.
|
20 |
CHAVEZ-GARCIA R O, AYCARD O. Multiple sensor fusion and classification for moving object detection and tracking[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 17(2): 525-534.
|
21 |
CHAVEZ-GARCIA R O, VU T D, AYCARD O. Fusion at detection level for frontal object perception[C].2014 IEEE Intelligent Vehicles Symposium Proceedings. IEEE, 2014: 1225-1230.
|
22 |
ZHU C, QIN B, XIAO F, et al. A fuzzy preference-based Dempster-Shafer evidence theory for decision fusion[J]. Information Sciences, 2021, 570: 306-322.
|
23 |
DRISS M, KOUBAA A, ATITALLAH S B, et al. Fusion of convolutional neural networks based on Dempster–Shafer theory for automatic pneumonia detection from chest X‐ray images[J]. International Journal of Imaging Systems and Technology, 2022, 32(2):658-672.
|
24 |
REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. Advances in Neural Information Processing Systems, 2015, 28.
|
25 |
SHI S, GUO C, JIANG L, et al. PV-RCNN: point-voxel feature set abstraction for 3D object detection[C].Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10529-10538.
|
26 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
|
27 |
REDMON J, FARHADI A. Yolov3: an incremental improvement[J]. arXiv preprint arXiv:, 2018.
|
28 |
BOCHKOVSKIY A, WANG C Y, LIAO H Y M. Yolov4: optimal speed and accuracy of object detection[J]. arXiv preprint arXiv:, 2020.
|
29 |
DUAN K, BAI S, XIE L, et al. Centernet: keypoint triplets for object detection[C].Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 6569-6578.
|
30 |
MURPHY C K. Combining belief functions when evidence conflicts[J]. Decision Support Systems, 2000, 29(1):1-9.
|