1 |
ANDREAS Theissler. Detecting known and unknown faults in automotive systems using ensemble-based anomaly detection[J]. Knowledge-Based Systems,2017,123.
|
2 |
KRIEBE S, KUSMENKO E, RUMPE B, et al. Learning error patterns from diagnosis trouble codes[C]. 2019 IEEE Intelligent Vehicles Symposium (IV), 2019:179-184.
|
3 |
VERBERT K, BABUŠKA R, DE SCHUTTER B. Bayesian and dempster-shafer reasoning for knowledge-based fault diagnosis-a comparative study[J]. Engineering Applications of Artificial Intelligence,2017,60.
|
4 |
LIU Yuwei, CHENG Yuqiang, ZHANG Zhenzhen, et al. Multi-information fusion fault diagnosis based on KNN and improved evidence theory[J]. Journal of Vibration Engineering & Technologies,2021(prepublish).
|
5 |
李仲兴,秦霞,薛红涛.基于BN和改进DST的轮毂电机故障诊断方法[J].华中科技大学学报(自然科学版),2021,49(8):27-32. DOI:10.13245/j.hust.210805.
|
|
LI Zhongxing, QIN Xia, XUE Hongtao. In-wheel motor fault diagnosis method based on BN and improved DST[J]. Huazhong Univ. of Sci. & Tech. (Natural Science Edition),2021,49(8):27-32. DOI:10.13245/j.hust.210805.
|
6 |
李宏梅,佟为明,程树康.基于贝叶斯网络的信息融合汽车网络故障诊断方法[J].汽车工程,2015,37(10):1190-1194. DOI:10.19562/j.chinasae.qcgc.2015.10.015.
|
|
LI Hongmei, TONG Weiming, CHENG Shukang. Fault diagnosis method of automotive network with bayesian network-based information fusion[J]. Automotive Engineering,2015,37(10):1190-1194. DOI:10.19562/j.chinasae.qcgc.2015.10.015.
|
7 |
史晓娟,姚兵,顾华北.基于模糊贝叶斯网络的矿井排水系统故障诊断[J].工矿自动化,2022,48(9):77-83.DOI:10.13272/j.issn.1671-251x.18014.
|
|
SHI Xiaojuan, YAO Bing, GU Huabei. Fault diagnosis of mine drainage system based on fuzzy bayesian network[J]. Journal of Mine Automation,2022,48(9):77-83. DOI:10.13272/j.issn.1671-251x.18014.
|
8 |
陶鹏,张洋瑞,李兵,等.基于D-S理论多源信息融合的电气设备故障诊断模型[J].计算机应用与软件,2021,38(7):73-79.
|
|
TAO Peng, ZHANG Yangrui, LI Bing, et al. Fault diagnosis model of electricial equipment based on D-S theory multi-source information fusion[J]. Computer Applications and Software, 2021,38(7):73-79.
|
9 |
张宽,吐松江·卡日,高文胜,等.基于云模型和改进D-S证据理论的变压器故障诊断[J].高压电器,2022,58(4):196-204.DOI:10.13296 /j.1001-1609.hva.2022.04.027.
|
|
ZHANG Kuan, TUSONGJIANG·Kari, GAO Wensheng, et al. Fault diagnosis of transformer based on cloud model and improved D⁃S evidence theory[J]. High Voltage Apparatus,2022,58(4):196-204. DOI:10.13296/j.1001-1609. hva.2022.04.027.
|
10 |
夏飞,孟娟,杨平,等.改进D-S证据理论在振动故障诊断中的应用[J].电子测量与仪器学报,2018,32(7):171-179. DOI:10.13382/j.jemi.2018.07.025.
|
|
XIA Fei, MENG Juan, YANG Ping, et al. Application of improved D-S evidence theory in vibration fault diagnosis[J]. Journal of Electronic Measurement and Instrumentation, 2018,32(7):171-179. DOI:10.13382/j.jemi.2018.07.025.
|
11 |
叶琼,李绍稳,张友华,等.云模型及应用综述[J].计算机工程与设计,2011,32(12):4198-4201.DOI:10.16208/j.issn1000-7024.2011.12.033.
|
|
YE Qiong, LI Shaowen, ZHANG Youhua, et al. Cloud model and application overview[J]. Computer Engineering and Design,2011,32(12):4198-4201.DOI:10.16208/j.issn1000-7024.2011.12.033.
|
12 |
GAO Fei. An integrated risk analysis method for tanker cargo handling operation using the cloud model and DEMATEL method[J]. Ocean Engineering,2022,266(P4).
|
13 |
DENG Yong. Uncertainty measure in evidence theory[J]. Science China(Information Sciences),2020,63(11):5-23.
|
14 |
LIU Weiru. Analyzing the degree of conflict among belief functions[J]. Artificial Intelligence,2006,170(11).
|
15 |
奚婷婷,熊伟丽,张林,等.基于矩阵分析的DS合成算法[J].计算机工程,2009,35(16):264-266.
|
|
XI Tingting, XIONG Weili, ZHANG Lin, et al. DS compositive algorithm based on matrix analysis[J]. Computer Engineering,2009,35(16):264-266.
|
16 |
PANARETOS V M, ZEMEL Y. Statistical aspects of wasserstein distances[J]. Annual Review of Statistics and Its Application,2019,6(1).
|
17 |
张雅媛,孙力帆,郑国强.基于改进Jousselme证据距离的多传感器决策融合方法[J].仪表技术与传感器,2019(7):82-87.
|
|
ZHANG Yayuan, SUN Lifan, ZHENG Guoqiang. Approach to multi-sensor decision fusion based on improved jousselme evidence distance[J]. Instrument Technique and Sensor, 2019(7):82-87.
|
18 |
肖建于,童敏明,朱昌杰,等.基于pignistic概率距离的改进证据组合规则[J].上海交通大学学报,2012,46(4):636-641,645. DOI:10.16183/j.cnki.jsjtu.2012.04.024.
|
|
XIAO Jianyu, TONG Minming, ZHU Changjie, et al. Improved combination rule of evidence based on pignistic probability distance[J]. Journal of Shanghai Jiaotong University, 2012,46(4):636-641,645. DOI:10.16183/j.cnki.jsjtu.2012.04.024.
|
19 |
DENG Yong, SHI WenKang, ZHU Zhenfu, et al. Combining belief functions based on distance of evidence[J]. Decision Support Systems,2004,38(3).
|