1 |
DAMA K K, BADU V S, RAO R N. State of the art on automotive lightweight body-in-white design[J]. Materials Today: Proceedings, 2018, 5(10): 20966-20971.
|
2 |
李光霁, 刘新玲. 汽车轻量化技术的研究现状综述[J]. 材料科学与工艺, 2020, 28(5): 47-61.
|
|
LI G J, LIU X L. Literature review on research and development of automotive lightweight technology[J]. Materials Science and Technology, 2020, 28(5): 47-61.
|
3 |
李先洲. 铝合金一体化压铸技术浅析[J]. 铸造, 2023, 72(4): 462-465.
|
|
LI X Z. Brief analysis on integrated die casting technology of aluminum alloy[J]. Foundry, 2023, 72(4): 462-465.
|
4 |
王程程. 铝合金真空压铸气致缺陷及力学性能研究[D]. 重庆:重庆大学, 2022.
|
|
WANG C C. Research on gas-induced defects and mechanical properties of aluminum alloy vacuum die casting[D]. Chongqing: Chongqing University, 2020.
|
5 |
潜圣汶,郑德兵. 基于高压薄壁铸铝的车身前轮罩成形技术研究[J]. 模具工业, 2021, 47(5): 67-71.
|
|
QIAN S W, ZHENG D B. Study on formability of front wheel housing based on thin wall HPDC aluminum[J]. Die & Mould Industry, 2021, 47(5): 67-71.
|
6 |
张俊超, 钟鼓, 邹纯,等. 真空压铸铝合金减震塔缺陷分析及改进[J]. 特种铸造及有色合金, 2019, 39(3): 275-278.
|
|
ZHANG J C, ZHONG G, ZOU C, et al. Casting defects analysis and quality improvement of aluminum alloy shock towers fabricated by vacuum assisted high pressure die casting[J]. Special Casting & Nonferrous Alloys, 2019, 39(3): 275-278.
|
7 |
曾维和, 苟黎刚, 罗宇,等. 超大尺寸一体式压铸铝合金后段车身疲劳仿真与试验研究[J].汽车工程, 2023, 45(7): 1263-1275.
|
|
ZHENG W H, GOU L G, LUO Y, et al. Fatigue simulation and experimental study of super-size integral die casting aluminum alloy rear end body[J]. Automotive Engineering, 2023, 45(7): 1263-1275.
|
8 |
BAO Z J, YANG H Y, DONG B X, et al. Development trend in composition optimization, microstructure manipulation, and strengthening methods of die steels under lightweight and integrated die casting[J]. Materials, 2023, 16(18): 6235.
|
9 |
LIU X, LIANG R, HU Y, et al. Collaborative optimization of vehicle crashworthiness under frontal impacts based on displacement oriented structure[J]. International Journal of Automotive Technology, 2021, 22: 1319-1335.
|
10 |
雷正保, 李铁侠, 王瑞. 纯电动汽车车身多目标拓扑优化设计[J]. 大连理工大学学报, 2015, 55(5): 484-491.
|
|
LEI Z B, LI T X, WANG R. Multi-objective topology optimization design of pure electric vehicle body[J]. Journal of Dalian University of Technology, 2015, 55(5): 484-491.
|
11 |
付军鹏. 电动汽车车身结构设计与轻量化研究[D]. 北京:北京交通大学, 2022.
|
|
FU J P. Research on design of electric vehicle body structure and lightweight[D]. Beijing: Beijing Jiaotong University, 2022.
|
12 |
赵笠程. 纯电动汽车白车身多目标轻量化优化设计研究[D].长沙:湖南大学, 2020.
|
|
ZHAO L C. Research on multi-objective lightweight optimization design of pure electric vehicle body-in-white[D]. Changsha:Hunan University, 2020.
|
13 |
MAO H, FU W, LAN J, et al. Lightweight design of a shock tower based on topology and size optimization[C].2017 7th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2017). Atlantis Press, 2017: 162-166.
|
14 |
林佳武, 李玄霜, 陈宗明,等. 真空高压铸造铝合金车身后纵梁轻量化设计[J]. 汽车工程, 2020, 42(3): 383-389,400.
|
|
LIN X W, LI X S, CHEN Z M, et al. Lightweight design of body rear longitudinal beam of VAHP die-casting aluminum alloy[J]. Automotive Engineering, 2020, 42(3): 383-389,400.
|
15 |
ESCHENAUER H A, OLHOFF N. Topology optimization of continuum structures: a review[J]. Appl. Mech. Rev., 2001, 54(4): 331-390.
|
16 |
李铁柱, 华睿, 黄维. 基于拓扑优化的白车身扭转刚度性能设计[J]. 汽车实用技术, 2019(17): 180-182.
|
|
LI T Z, HUA R, HUANG W. Torsional stiffness performance design of body-in-white based on topology optimization[J]. Automobile Applied Technology, 2019(17): 180-182.
|
17 |
洪清泉, 赵康, 张攀, 等. OptiStruct&HyperStudy 理论基础与工程应用[M]. 北京: 机械工业出版社, 2012.
|
|
HONG Q Q, ZHAO K, ZHANG P, et al. OptiStruct&HyperStudy theoretical basis and engineering application[M]. Beijing: China Machine Press, 2012.
|
18 |
WANG D, ZHANG J, WANG S, et al. Frontal vehicular crash energy management using analytical model in multiple conditions[J]. Sustainability, 2022, 14(24): 16913.
|
19 |
C-NCAP 管理规则(2021 年版)[S]. 天津: 中国汽车技术研究中心有限公司, 2021.
|
|
C-NCAP management rules(2021)[S]. Tianjin: CATARC, 2021.
|
20 |
LIU X, LIANG R, HU Y, et al. Collaborative optimization of vehicle crashworthiness under frontal impacts based on displacement oriented structure[J]. International Journal of Automotive Technology, 2021, 22: 1319-1335.
|
21 |
HUANG M. Vehicle crash mechanics[M]. CRC Press, 2002.
|
22 |
HUANG S, DONG J. Optimization study of vehicle crashworthiness based on two types of frontal impacts[C]. 2015 International Conference on Transportation Information and Safety (ICTIS). IEEE, 2015: 409-413.
|
23 |
ABBASI M, GHAFARI-NAZARI A, REDDY S, et al. A new approach for optimizing automotive crashworthiness: concurrent usage of ANFIS and Taguchi method[J]. Structural and Multidisciplinary Optimization, 2014, 49: 485-499.
|
24 |
LI Q Q, LI E, CHEN T, et al. Improve the frontal crashworthiness of vehicle through the design of front rail[J]. Thin-Walled Structures, 2021, 162: 107588.
|
25 |
DUAN L, SUN G, CUI J, et al. Crashworthiness design of vehicle structure with tailor rolled blank[J]. Structural and Multidisciplinary Optimization, 2016, 53: 321-338.
|
26 |
GUAN Z, LI G, CHENG A, et al. The lightweight of auto body based on topology optimization and sensitivity analysis[C]. SAE Paper 2015-01-1367.
|
27 |
雷正保, 肖林辉, 阳彪,等. 纯电动汽车的碰撞相容性与NVH多目标拓扑优化[J]. 武汉理工大学学报(交通科学与工程版), 2016, 40(1): 31-35.
|
|
LEI Z B, XIAO L H, YANG B, et al. Multi-objective topology optimization design of electric vehicle based on collision compatibility and NVH[J]. Journal of Wuhan University of Technology(Transportation Science & Engineering), 2016, 40(1): 31-35.
|