汽车工程 ›› 2024, Vol. 46 ›› Issue (11): 2076-2090.doi: 10.19562/j.chinasae.qcgc.2024.11.014

• • 上一篇    下一篇

基于多工况模式的复合型悬架平顺性研究

孙文1,2,李晨阳1,4,王军年2(),万旭君3,刘桂均1,李伟4   

  1. 1.常州工学院汽车工程学院,常州 213032
    2.吉林大学,汽车底盘集成与仿生全国重点实验室,长春 130025
    3.北汽重型汽车有限公司,常州 213003
    4.山东交通学院汽车工程学院,济南 250357
  • 收稿日期:2024-03-16 修回日期:2024-04-23 出版日期:2024-11-25 发布日期:2024-11-22
  • 通讯作者: 王军年 E-mail:wjn@jlu.edu.cn
  • 基金资助:
    国家自然科学基金(52272365);江苏省高等学校基础科学(自然科学)研究项目(22KJA580001);吉林省中青年科技创新创业卓越人才(团队)项目(20230508050RC);吉林省自然科学基金(20220101200JC)

Research on Ride Comfort of Composite Suspension Based on Multiple Working Condition Modes

Wen Sun1,2,Chenyang Li1,4,Junnian Wang2(),Xujun Wan3,Guijun Liu1,Wei Li4   

  1. 1.College of Automotive Engineering,Changzhou Institute of Technology,Changzhou 213032
    2.Jilin University,National Key Laboratory of Automotive Chassis Integration and Bionics,Changchun 130025
    3.BAIC Heavy Duty Truck Co. ,Ltd. ,Changzhou 213003
    4.School of Automotive Engineering,Shandong Jiaotong University,Jinan 250357
  • Received:2024-03-16 Revised:2024-04-23 Online:2024-11-25 Published:2024-11-22
  • Contact: Junnian Wang E-mail:wjn@jlu.edu.cn

摘要:

悬架系统作为调控车辆平顺性的核心组件,其性能直接决定了车辆行驶的优劣。针对目前车辆在复杂路面行驶过程中平顺性较差的问题,本文构建了不同于传统悬架的复合型悬架结构,并搭建该悬架的整体系统构架。首先为了探究整车复合型悬架的振动机理,构建整车复合型悬架动力学模型;其次结合驾驶员复杂的行驶需求,构建基于多工况的复合悬架系统控制策略,通过车辆行驶中不同的加权加速度均方根值验证其优化效果,并结合反空气弹簧模型证明了该系统可以减少空气弹簧的磨损;最后,在VI-Grade紧凑型驾驶模拟器中根据所构建的复杂工况进行试验验证,对比有无控制时的车身垂向加速度、侧倾角加速度和俯仰角加速度试验结果。试验结果表明,通过复杂工况中的车辆性能测试,所提出的复合型悬架系统在直线、弯道和制动3种工况下改善性能分别达到了32.26%、23.77%和7.38%,可以有效改善车辆行驶时的平顺性性能,解决了正常行驶下空气弹簧的损耗问题。

关键词: 复合型悬架系统设计, 平顺性优化, 多工况控制策略, 工作模式切换策略, 多工况验证

Abstract:

As a core component for regulating vehicle ride comfort, the performance of the suspension system directly determines the quality of vehicle driving. For the current problem of poor ride comfort during vehicle driving on complex roads, a composite suspension structure that is different from traditional suspensions is constructed in this paper, and the overall system architecture of this suspension is established. Firstly, in order to explore the vibration mechanism of the composite suspension of the complete vehicle, a dynamic model of the composite suspension of the complete vehicle is constructed. Secondly, combined with the complex driving requirements of the driver, a control strategy for the composite suspension system based on multiple operating conditions is constructed. The optimization effect is verified by different weighted RMS values of acceleration during vehicle driving, and the anti-air spring model is used to prove that the system can reduce the wear of the air spring. Finally, in the VI-Grade compact driving simulator, experimental verification is conducted based on the constructed complex operating conditions, and the test results of body vertical acceleration, roll angle acceleration, and pitch angle acceleration with and without control are compared. The experimental results show that the proposed composite suspension system can improve performance by 32.26%, 23.77%, and 7.38% under straight, curved, and braking conditions, respectively, through vehicle performance testing under complex conditions. It can effectively improve the ride comfort performance of vehicles while driving and solve the problem of air spring wear under normal driving conditions.

Key words: composite suspension system, ride comfort optimization, multi-condition control strategy, control strategy of switching working mode, multi-condition verification