汽车工程 ›› 2024, Vol. 46 ›› Issue (11): 2091-2099.doi: 10.19562/j.chinasae.qcgc.2024.11.015
收稿日期:
2024-06-02
修回日期:
2024-07-01
出版日期:
2024-11-25
发布日期:
2024-11-22
通讯作者:
查云飞
E-mail:fei244@163.com
基金资助:
Yunfei Zha(),Liyuan Zheng,Yinyuan Qiu,Yue Chen
Received:
2024-06-02
Revised:
2024-07-01
Online:
2024-11-25
Published:
2024-11-22
Contact:
Yunfei Zha
E-mail:fei244@163.com
摘要:
纯电动汽车的振动特性与传统内燃机汽车存在较大差异,本文针对纯电动汽车悬置隔振率不足的问题,提出了一种适用于悬置系统隔振率优化的研究方法。分析悬置系统各方向隔振率以及影响悬置隔振率的主要因素,确定了后悬置隔振率作为优化对象,提出通过优化悬置被动侧支架安装点动刚度来提升隔振率。采用第二代非劣排序遗传多目标寻优算法,以隔振率最优、质量比变化最小为寻优目标,对支架安装点动刚度目标值进行寻优,根据寻优结果对被动侧支架结构进行调整。试验结果表明,优化后的后悬置Y向隔振率从5.61提升至18.13 dB,驾驶员右耳旁噪声在24、48阶次下降9.76和5.03 dB(A),驾驶舒适性有明显改善。
查云飞,郑利渊,邱胤原,陈越. 基于NSGA-II的纯电动汽车悬置系统隔振率优化[J]. 汽车工程, 2024, 46(11): 2091-2099.
Yunfei Zha,Liyuan Zheng,Yinyuan Qiu,Yue Chen. Optimization of Vibration Isolation Rate of Pure Electric Vehicle Mounting System Based on NSGA-II[J]. Automotive Engineering, 2024, 46(11): 2091-2099.
1 | 王东亮, 杜遥, 孙玉华, 等. 轻型商用车动力总成悬置系统隔振优化研究[J]. 噪声与振动控制, 2022, 42(4): 208-213. |
WANG D L, DU Y, SUN Y H, et al. Vibration isolation optimization of light commercial vehicle powertrain mounting system[J]. Nosie and Vibration Control, 2022, 42(4): 208-213. | |
2 | 刘春梅, 黄德惠, 郑成, 等. 动力总成悬置系统的可靠设计[J]. 中国机械工程, 2020, 31(21): 2529-2534. |
LIU C M, HUANG D H, ZHENG C, et al. Reliable design of PMSs[J]. China Mechanical Engineering, 2020, 31(21): 2529-2534. | |
3 | NITHIN S K, HEMANTH K, SHAMANTH V. A review on combustion and vibration condition monitoring of IC engine[J]. Materials Today: Proceedings, 2020, 45: 65-70. |
4 | ZHOU H, LIU H, PU G, et al. Optimization design and performance analysis of vehicle powertrain mounting system[J]. Chinese Journal of Mechanical Engineering, 2018, 31: 1-13. |
5 | 潘公宇, 付博文, 王功强, 等. 基于TPA和遗传算法的动力总成悬置系统优化设计[J]. 振动与冲击, 2021, 40(14): 279-286. |
PAN G Y, FU B W, WANG G Q, et al. Optimization design of a powertrain mount-system based on the TPA and genetic algorithm[J]. Journal of Vibration and Shock, 2021, 40(14): 279-286. | |
6 | 胡金芳, 高东阳, 朱冬东. 非线性影响下悬置系统模态分析及解耦度计算方法研究[J]. 汽车工程, 2019, 41(5): 556-563. |
HU J F, GAO D Y, ZHU D D. A research on modal analysis and decoupling-degree calculation methodsof mounting system under the influence of nonlinearity[J]. Automotive Engineering, 2019, 41(5): 556-563. | |
7 | VOPAŘIL J, PROKOP A, ŘEHÁK K. Influence of a powertrain mounting method on powertrain vibration[C]. 2020 19th International Conference on Mechatronics-Mechatronika (ME). IEEE, 2020: 1-7. |
8 | CAI B H, SHANGGUAN W B, LYU H. An efficient analysis and optimization method for the powertrain mounting system with hybrid random and interval uncertainties[J]. Engineering Optimization, 2020, 52(9):1522-1541. |
9 | HAZRA S, REDDY J K. A review paper on recent research of noise and vibration in electric vehicle powertrain mounting system[J]. SAE International Journal of Vehicle Dynamics, Stability, and NVH, 2021, 6(10-06-01-0001): 3-22. |
10 | HAZRA S, REDDY J K. Design optimization of engine mounting system for a modular electric vehicle platform with different powertrain characteristics[C]. Journal of Physics: Conference Series. IOP Publishing, 2022, 2198(1): 012014. |
11 | TSONGAS K, TZETZIS D, MANSOUR G. Mechanical and vibration isolation behaviour of acrylonitrile-butadiene rubber/multi-walled carbon nanotube composite machine mounts[J]. Plastics, Rubber and Composites, 2017, 46(10): 458-468. |
12 | SHANGGUAN W B, LIU X A, LV Z P, et al. Design method of automotive powertrain mounting system based on vibration and noise limitations of vehicle level[J]. Mechanical Systems and Signal Processing, 2016, 76: 677-695. |
13 | HAZRA S. Engine mounting system design approach for electric vehicles[C]. SAE Paper 2019-26-0116. |
14 | ZHANG J Q, LIU X A. Research on high-frequency dynamic models of rubber mounts with second-stage isolation[C]. SAE Paper 2022-01-0617. |
15 | 郭一鸣, 吴钟恺, 上官文斌. 衬套型橡胶悬置结构形状的优化方法[J]. 振动与冲击, 2022, 41(5): 55-59,82. |
GUO Y M, WU Z K, SHANGGUAN W B. Optimization method of structure shape of bushing rubber mount[J]. Journal of Vibration and Shock, 2022, 41(5): 55-59,82. | |
16 | 吕辉, 赵嘉伟, 毛海宽, 等. 考虑概率参数相关性的电动车悬置系统分析[J]. 华南理工大学学报(自然科学版), 2022, 50(3): 65-72. |
LYU H, ZHAO J W, MAO H K, et al. Analysis of the powertrain mount system of electric vehicles by considering the correlation of probabilistic parameters[J]. Journal of South China University of Technology(Natural Science Edition), 2022, 50(3): 65-72. | |
17 | 李胜, 胡金蕊, 王建鑫, 等. 动力总成悬置系统全局稳健设计方法[J]. 吉林大学学报(工学版), 2020, 50(6): 1967-1973. |
LI S, HU J R, WANG J X, et al. Global robust design method of powertrain mounting system[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(6): 1967-1973. | |
18 | 范让林, 徐春野, 吴列, 等. 电动汽车橡胶悬置高频动特性试验[J]. 振动. 测试与诊断, 2023, 43(1): 126-131,202. |
FAN R L, XU C Y, WU L, et al. High⁃frequency dynamics experiment of rubber mount for electric vehicles[J]. Journal of Vibration, Measurement & Diagnosis, 2023, 43(1): 126-131,202. | |
19 | HANG W, LING Z, LI Y N. Optimization design and analysis of automobile powertrain mount system[C]. SAE Paper 2020-01-0407. |
20 | CAI B H, SHANGGUAN W B, LYU H. An efficient analysis and optimization method for powertrain mounting systems involving interval uncertainty[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2020, 234(5) : 1318-1329. |
21 | LYU H, YANG K, HUANG X T, et al. Uncertainty and correlation propagation analysis of powertrain mounting systems based on multi-ellipsoid convex model[J]. Mechanical Systems and Signal Processing, 2022, 173: 109058. |
22 | 周子琨, 夏二立, 陈梓铭, 等. 考虑被动侧动刚度的动力总成悬置传递率优化[J]. 噪声与振动控制, 2020, 40(1): 74-79. |
ZHOU Z K, XIA E L, CHEN Z M, et al. Vibration transmissibility optimization of powertrain mounts considering passive-side dynamic stiffness[J]. Nosie and Vibration Control, 2020, 40(1): 74-79. | |
23 | 李汶哲, 毛海宽, 吕辉. 电动车动力总成悬置系统的可靠性分析方法[J]. 湖南大学学报(自然科学版), 2023, 50(4): 55-64. |
LI W Z, MAO H K, LYU H. A reliability analysis method for powertrain mounting systems of electric vehicles[J]. Journal of Hunan University(Natural Sciences), 2023, 50(4): 55-64. | |
24 | 庞剑. 汽车车身噪声与振动控制[M]. 北京: 机械工业出版社,2015. |
PANG J. NVH control of automobile body[M]. Beijing: China Machine Press, 2015. | |
25 | 张赣波, 赵耀. 反共振双层隔振系统分析[J]. 振动与冲击, 2022, 41(15): 29-35,70. |
ZHANG G B, ZHAO Y. Analysis of anti-resonant two-stage isolation system[J]. Journal of Vibration and Shock, 2022, 41(15): 29-35,70. | |
26 | TRUONG N H, DAO D N. New hybrid approach HNSGA-III&SPEA/R: application to optimization of powertrain mount system stiffness parameters[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2021, 40(4): 1976-1992. |
27 | YAO J C, FARD M, DAVY J L, et al. The prediction of vehicle vibration transmitted to the occupant using a modular transfer matrix[J]. Journal of Vibration and Control, 2022, 28(13-14): 1698-1711. |
28 | ŠVEC J G, GRANQVIST S. Tutorial and guidelines on measurement of sound pressure level in voice and speech[J]. Journal of Speech, Language, and Hearing Research, 2018, 61(3): 441-461. |
29 | 兰华. 永磁同步电机的电磁力波与电磁振动研究[D].哈尔滨:哈尔滨工业大学,2020. |
[1] | 贺伯林,陈勇,代青林. 基于LADRC的纯电动汽车双离合变速器换挡控制[J]. 汽车工程, 2024, 46(9): 1668-1677. |
[2] | 刘长钊,王坤,宋健,范朔铭,陈祥龙. 开关磁阻电驱动系统机电控协同设计[J]. 汽车工程, 2024, 46(8): 1457-1468. |
[3] | 吕辉,张家明,黄晓婷,上官文斌. 基于概率模型和数据驱动的动力总成悬置系统可靠性优化[J]. 汽车工程, 2024, 46(3): 456-463. |
[4] | 沈龙,张军,秦宾. 纯电动汽车高速工况下底盘后部空腔引起低频噪声问题的分析改进[J]. 汽车工程, 2024, 46(3): 520-525. |
[5] | 曹志鹏,陈勇,贺伯林,肖森,高炳钊,殷学冰. 基于工况识别的纯电动汽车2DCT换挡策略研究[J]. 汽车工程, 2024, 46(10): 1873-1885. |
[6] | 张鹏博, 陈仁祥, 邵毅明, 孙世政, 闫凯波. 纯电动汽车电驱动系统故障诊断研究进展[J]. 汽车工程, 2024, 46(1): 61-74. |
[7] | 朱成,刘頔,滕欣余,张国华,于丹,刘沙,胡苧丹. 新能源汽车综合经济性对比分析及预测研究[J]. 汽车工程, 2023, 45(2): 333-340. |
[8] | 李学良,赵志福,杨树军,彭增雄. 双电机耦合驱动系统构型分层设计方法[J]. 汽车工程, 2023, 45(10): 1897-1907. |
[9] | 程夕明,胡薇,翟钧,罗荣华,张盼,徐野. 纯电动汽车低压电气系统效率研究[J]. 汽车工程, 2022, 44(4): 601-608. |
[10] | 刘长钊,张铁,宋健,尹显颂,葛帅帅. 纯电动汽车电驱动系统耦合动力学研究[J]. 汽车工程, 2022, 44(12): 1896-1909. |
[11] | 殷学冰,陈勇,代青林,刘海,田乃利,贺伯林. 基于NSGA-Ⅱ算法和模糊控制的纯电动汽车2DCT换挡规律研究[J]. 汽车工程, 2022, 44(10): 1571-1580. |
[12] | 常九健,张煜帆. 基于EMB的纯电动汽车制动能量回收优化控制策略研究[J]. 汽车工程, 2022, 44(1): 64-72. |
[13] | 刘志超,郑天雷,龚慧明,保翔,纪梦雪. 基于中国工况的纯电动乘用车续驶里程评价方法研究[J]. 汽车工程, 2021, 43(5): 705-712. |
[14] | 黄伟,张桂连,周登辉,胡林. 基于能量流分析的纯电动汽车电耗优化研究[J]. 汽车工程, 2021, 43(2): 171-180. |
[15] | 邱彬,禹如杰,刘勇,赵冬昶,宋健. 基于学习率的纯电动与燃料电池汽车分场景经济性比较研究[J]. 汽车工程, 2021, 43(2): 296-304. |
|