汽车工程 ›› 2024, Vol. 46 ›› Issue (8): 1457-1468.doi: 10.19562/j.chinasae.qcgc.2024.08.012

• • 上一篇    

开关磁阻电驱动系统机电控协同设计

刘长钊1(),王坤1,宋健1,范朔铭1,陈祥龙1,2   

  1. 1.重庆大学,高端装备机械传动全国重点实验室,重庆 400044
    2.山东新华医疗器械股份有限公司,淄博 255086
  • 收稿日期:2024-02-07 修回日期:2024-04-08 出版日期:2024-08-25 发布日期:2024-08-23
  • 通讯作者: 刘长钊 E-mail:lczcq@qq.com
  • 基金资助:
    国家自然科学基金面上项目(52375040);重庆市自然科学基金面上项目(CSTB2023NSCQ-MSX0085);江苏省科技成果转化专项(BA2022033);江苏省双创团队项目(JSSCTD202239)

Electromechanical Control Collaborative Design of Switched Reluctance Electric Drive System

Changzhao Liu1(),Kun Wang1,Jian Song1,Shuoming Fan1,Xianglong Chen1,2   

  1. 1.Chongqing University,State Key Laboratory of Mechanical Transmission for Advanced Equipment,Chongqing  400044
    2.Shinva Medical Instrument Co. ,Ltd. ,Zibo  255086
  • Received:2024-02-07 Revised:2024-04-08 Online:2024-08-25 Published:2024-08-23
  • Contact: Changzhao Liu E-mail:lczcq@qq.com

摘要:

提出一种高性能开关磁阻电驱动系统的高效正向协同设计方法,来提高开关磁阻电驱动系统的功率密度,同时降低汽车在典型循环行驶工况下的损耗。首先,建立开关磁阻电机动态转矩模型和径向力模型;然后,建立开关磁阻电机损耗模型,并结合齿轮传动系统损耗模型形成电驱动系统损耗模型,用于典型循环行驶工况下电驱动系统损耗的计算。最后,以机械、电气和控制参数为协同设计变量,以系统的循环行驶工况损耗、质量和转矩波动与径向力脉动为优化目标,采用了双层嵌套优化方法进行优化设计。基于上述方法对12/8级开关磁阻电驱动系统进行优化设计,经协同优化设计后的开关磁阻电驱动系统总质量减轻了19.76%;CLTC-P典型循环工况的系统总损耗减少了42.45%;系统综合效率提升7.66%。

关键词: 纯电动汽车, 开关磁阻电驱动系统, 机电控参数, 协同设计

Abstract:

In this paper, an efficient forward collaborative design method for high-performance switched reluctance electric drive systems is proposed to enhance the power density and reduce vehicle loss under typical driving cycle conditions. Firstly, dynamic torque and radial force models of the switched reluctance motor are established. Subsequently, a loss model is developed for both the motor and the electric drive system by incorporating the gear transmission system's loss model to evaluate overall loss during typical driving cycle conditions. Finally, using mechanical, electrical, and control parameters as co-design variables and taking cycle loss, mass, torque fluctuation, and radial force fluctuation as optimization objectives, a double-layer nested optimization method is employed to optimize the design. Based on this approach, an optimized 12/8 grade switched reluctance electric drive system achieves a 19.76% reduction in total weight after collaborative optimization design. Moreover, under typical cycle conditions (CLTC-P), the total system loss decreases by 42.45%, while overall system efficiency increases by 7.66%.

Key words: pure electric vehicles, switched reluctance electric drive system, electromechanical control parameters, collaborative design