汽车工程 ›› 2023, Vol. 45 ›› Issue (10): 1897-1907.doi: 10.19562/j.chinasae.qcgc.2023.10.011
所属专题: 新能源汽车技术-电驱动&能量管理2023年
收稿日期:
2023-02-23
修回日期:
2023-04-02
出版日期:
2023-10-25
发布日期:
2023-10-23
通讯作者:
李学良
E-mail:lixl@ysu.edu.cn
基金资助:
Xueliang Li1(),Zhifu Zhao1,Shujun Yang1,Zengxiong Peng2
Received:
2023-02-23
Revised:
2023-04-02
Online:
2023-10-25
Published:
2023-10-23
Contact:
Xueliang Li
E-mail:lixl@ysu.edu.cn
摘要:
双电机耦合驱动系统可实现无动力中断模式切换和不同负载下的高效驱动,显著提高纯电动汽车的动力性和经济性。因其具有多自由度、多源驱动等特性,导致构型设计无规律可循。本文采用功能分析法研究双电机耦合驱动系统构型的功能生成及结构衍生过程,提出包含功能生成及结构衍生的分层设计方法。建立以子机构为基本单元的图论模型,基于运动干涉判断路径可耦合条件,通过路径叠加,获取满足功能需求的操纵序列。提出由基本构型到齿轴构型、齿轴构型到具体构型的逐级结构衍生方法。最后以某电动商用车为例,选取优选方案进行参数设计并仿真分析。与原车相比,C-WTVC工况下该类方案的百公里耗电量降低了8.97%,0-50 km/h的加速时间缩短了8.9 s。
李学良,赵志福,杨树军,彭增雄. 双电机耦合驱动系统构型分层设计方法[J]. 汽车工程, 2023, 45(10): 1897-1907.
Xueliang Li,Zhifu Zhao,Shujun Yang,Zengxiong Peng. Configuration Hierarchical Design Method of Dual-Motor Coupling Drive System[J]. Automotive Engineering, 2023, 45(10): 1897-1907.
表1
多动力源路径操纵序列"
多动力源路径操纵序列 | 子路径 | 个数 | 种类 | ||||||
---|---|---|---|---|---|---|---|---|---|
a | b | c | d | e | f | ||||
B1 | {c1, e1f1, c2} {d1e1c1, d1f1, d2f1, d2e1c2} | 0 | 0 | 2 | 2 | 1 | 1 | 6 | 4 |
B2 | {c1, e1f1, c2} {d1e1c1, d1f1, b1, d1e1c2} | 0 | 1 | 2 | 1 | 1 | 1 | 6 | 5 |
B3 | {c1, e1f1, c2} {d1e1c1, d1f1, d2f1, d2e2c2} | 0 | 0 | 2 | 2 | 2 | 1 | 7 | 4 |
B4 | {e1f1, e2f1, c1} {a1e1f1, d1f1, d2f1, d2e2c1} | 1 | 0 | 1 | 2 | 2 | 1 | 7 | 5 |
B5 | {e1f1, c1, c2} {a1e1f1, d1f1, d1f2, a1c2} | 1 | 0 | 2 | 1 | 1 | 2 | 7 | 5 |
B6 | {c1, e1f1, c2} {d1e1c1, d1f1, b1, d1e2c2} | 0 | 1 | 2 | 1 | 2 | 1 | 7 | 5 |
B7 | {c1, e1f1, c2} {d1e1c1, b1, b2, d1e1c2} | 0 | 2 | 2 | 1 | 1 | 1 | 7 | 5 |
B8 | {c1, e1f1, c2} {a1c1, b1, b2, a1c2} | 1 | 2 | 2 | 0 | 1 | 1 | 7 | 5 |
B9 | {c1, e1f1, c2} {a1c1, d1f1, d2f1, a1c2} | 1 | 0 | 2 | 2 | 1 | 1 | 7 | 5 |
表3
变连接结构属性及其布置形式"
序列 | 变连接结构 | 布置形式 |
---|---|---|
B1 | c1, c2, d1, d2, e1, f1 | c1-c2, d1-d2, e1, f1 |
B2 | b1, c1, c2, d1, e1, f1 | b1-d1, c1-c2, e1, f1 |
B3 | c1, c2, d1, d2, e1, e2, f1 | c1-c2, d1-d2, e1-e2, f1 |
B4 | a1, c1, d1, d2, e1, e2, f1 | a1-e2, c1-e1, d1-d2, f1 |
B5 | a1, c1, c2, d1, e1, f1, f2 | a1-d1, c1-c2, e1, f1-f2 |
B6 | b1, c1, c2, d1, e1, e2, f1 | b1-d1, c1-c2, e1-e2, f1 |
B7 | b1, b2, c1, c2, d1, e1, f1 | b1-b2, c1-c2, d1-f1, e1 |
B8 | a1, b1, b2, c1, c2, e1, f1 | a1-e1, b1-b2, c1-c2, f1; a1, b1-b2, c1-e1, c2-f1 |
B9 | a1, c1, c2, d1, d2, e1, f1 | a1-e1, c1-c2, d1-d2, f1 |
1 | 国务院办公厅. 关于印发新能源汽车产业发展规划(2021-2035年)的通知[J]. 中华人民共和国国务院公报, 2020(31): 16-23. |
General Office of the State Council. On the issuance of new energy vehicle industry development plan (2021-2035) [J]. Bulletin of The State Council of the People's Republic of China, 2020(31): 16-23. | |
2 | 中华人民共和国工业和信息化部. 新能源汽车产业发展规划(2021-2035年)[EB/OL]. http://www.gov.cn/zhengce/content/2020-11/02/content_5556716.htm, 2020-11-02. |
Ministry of Industry and Information Technology, PRC. New energy vehicle industry development plan (2021-2035)[EB/OL]. http: //www.gov.cn/zhengce/content/2020-11/02/content_5556716. htm, 2020-11-02. | |
3 | HU M H, ZENG J F, XU S Z, et al. Efficiency study of a dual-motor coupling EV powertrain[J]. IEEE Transactions on Vehicular Technology, 2015, 64(6): 2252-2260. |
4 | 李同辉, 谢斌, 宋正河, 等. 电动拖拉机双电机耦合驱动系统传动特性研究[J]. 农业机械学报, 2019, 50(6): 379-388. |
LI T H, XIE B, SONG Z H, et al. Research on transmission characteristics of electric tractor dual-motor coupling drive system[J]. Journal of Agricultural Machinery, 2019, 50(6): 379-388. | |
5 | 林歆悠, 伍家鋆, 魏申申. 双电机耦合驱动电动汽车驱动模式划分与优化[J]. 汽车工程, 2020, 42(4): 424-430. |
LIN X Y, WU J J, WEI S S. The drive mode division and optimization of dual-motor coupling drive electric vehicles[J]. Automotive Engineering, 2020, 42(4): 424-430. | |
6 | HU J J, ZHENG L L, JIA M X, et al. Optimization and model validation of operation control strategies for a novel dual-motor coupling-propulsion pure electric vehicle[J]. Energies, 2018, 11(4). |
7 | ZHAO Z G, TANG P, LI H D. Generation, screening, and optimization of powertrain configurations for power-split hybrid electric vehicle: a comprehensive overview[J]. IEEE Transactions on Transportation Electrification, 2022,8(1):325-344. |
8 | ZHANG P, YAN F W, DU C Q. A comprehensive analysis of energy management strategies for hybrid electric vehicles based on bibliometrics[J]. Renewable and Sustainable Energy Reviews, 2015,48: 88-104. |
9 | HU J J, ZU G Q, JIA M X, et al. Parameter matching and optimal energy management for a novel dual-motor multi-modes powertrain system[J]. Mechanical Systems and Signal Processing, 2019, 116. |
10 | MA C, KANG J, CHOI W, et al. A comparative study on the power characteristics and control strategies for plug-in hybrid electric vehicles[J]. International Journal of Automotive Technology,2012,13(3). |
11 | KIM H, KUM D. Comprehensive design methodology of input and output split hybrid electric vehicles: in search of optimal configuration[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(6): 2912-2923. |
12 | ZHANG X, LI C, KUM D, et al. Prius+ and Volt-: configuration analysis of power-split hybrid vehicles with a single planetary gear[J]. IEEE Transactions on Vehicular Technology, 2012, 61(8). |
13 | 符升平, 黄瀚林, 明伟. 拓扑特征演化分析下行星变速机构构型综合[J]. 中国机械工程, 2020, 31(21): 2557-2565. |
FU S P, HUANG H L, MING W. Synthesis of planetary gearbox configurations based on evolution analysis of topological features[J]. China Mechanical Engineering, 2020, 31(21): 2557-2565. | |
14 | LI X L, HU J B, PENG Z X. et al. Synthesis method for compact dual-clutch transmission with four DOFs gear mechanism[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2019,233(11): 2929-2938. |
15 | LI R, FAN J J, HAN Z D, et al. Configuration design and control of hybrid tracked vehicle with three planetary gear sets[J]. Journal of Central South University, 2021, 28(7). |
16 | WEN C K, ZHANG S L, XIE B, et al. Design and verification innovative approach of dual-motor power coupling drive systems for electric tractors[J]. Energy, 2022, 247. |
17 | YANG Y L, LI P S, PEI H X, et al. Design of all-wheel-drive power-split hybrid configuration schemes based on hierarchical topology graph theory[J]. Energy, 2022, 242. |
18 | 胡建军, 刘子睿, 梅博, 等. 一种单行星排功率分流式混合动力系统构型优化设计方案[J]. 机械工程学报, 2021, 57(18): 264-276. |
HU J J, LIU Z R, MEI B, et al. Optimization design scheme of power-split hybrid electric powertrain configuration with single planetary gear[J]. Chinese Journal of Mechanical Engineering, 2021, 57(18): 264-276. | |
19 | 杨亚联, 米娇, 胡晓松, 等. 混合动力汽车行星耦合传动系统的图论建模及动力学分析[J].汽车工程, 2015, 37(1):9-15,54. |
YANG Y L, MI J, HU X S, et al. Graph theory modeling and dynamic analysis of planetary coupling transmission system of hybrid electric vehicle[J]. Automotive Engineering, 2015, 37(1): 9-15,54. | |
20 | PENG Z X, YUAN S H, HU J B, et al. Topological design of parallel hybrid transmission with electric torque support[C]. ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2015. |
[1] | 张鹏博, 陈仁祥, 邵毅明, 孙世政, 闫凯波. 纯电动汽车电驱动系统故障诊断研究进展[J]. 汽车工程, 2024, 46(1): 61-74. |
[2] | 朱成,刘頔,滕欣余,张国华,于丹,刘沙,胡苧丹. 新能源汽车综合经济性对比分析及预测研究[J]. 汽车工程, 2023, 45(2): 333-340. |
[3] | 熊璐,李聪聪,卓桂荣,程玉林,乔乐,王心坚. 电子机械制动器构型及控制技术发展现状[J]. 汽车工程, 2023, 45(12): 2187-2199. |
[4] | 张奇祥,靳立强,靳博豪,张伊晗,陈鹏飞,刘永腾,李建华. EMB夹紧力控制与传感器故障诊断研究进展[J]. 汽车工程, 2022, 44(5): 736-746. |
[5] | 程夕明,胡薇,翟钧,罗荣华,张盼,徐野. 纯电动汽车低压电气系统效率研究[J]. 汽车工程, 2022, 44(4): 601-608. |
[6] | 李军求,刘吉威,朱超峰. 基于时变底盘构型的混动车辆能量管理研究[J]. 汽车工程, 2022, 44(12): 1866-1876. |
[7] | 刘长钊,张铁,宋健,尹显颂,葛帅帅. 纯电动汽车电驱动系统耦合动力学研究[J]. 汽车工程, 2022, 44(12): 1896-1909. |
[8] | 殷学冰,陈勇,代青林,刘海,田乃利,贺伯林. 基于NSGA-Ⅱ算法和模糊控制的纯电动汽车2DCT换挡规律研究[J]. 汽车工程, 2022, 44(10): 1571-1580. |
[9] | 常九健,张煜帆. 基于EMB的纯电动汽车制动能量回收优化控制策略研究[J]. 汽车工程, 2022, 44(1): 64-72. |
[10] | 刘志超,郑天雷,龚慧明,保翔,纪梦雪. 基于中国工况的纯电动乘用车续驶里程评价方法研究[J]. 汽车工程, 2021, 43(5): 705-712. |
[11] | 黄伟,张桂连,周登辉,胡林. 基于能量流分析的纯电动汽车电耗优化研究[J]. 汽车工程, 2021, 43(2): 171-180. |
[12] | 邱彬,禹如杰,刘勇,赵冬昶,宋健. 基于学习率的纯电动与燃料电池汽车分场景经济性比较研究[J]. 汽车工程, 2021, 43(2): 296-304. |
[13] | 田慧欣, 李晓宇, 刘芳. 基于地图信息和循环SVR模型的纯电动汽车续驶里程预测*[J]. 汽车工程, 2020, 42(9): 1174-1182. |
[14] | 林歆悠, 伍家鋆, 魏申申. 双电机耦合驱动电动汽车驱动模式划分与优化*[J]. 汽车工程, 2020, 42(4): 425-430. |
[15] | 徐建全, 杨沿平. 纯电动汽车与传统汽车轻量化全生命周期多目标优化研究*[J]. 汽车工程, 2019, 41(8): 885-891. |
|