新能源汽车技术-电驱动&能量管理2023年
为研究集中式中心驱动四电机-4AMT变速器系统应用在纯电重型商用车上的动力性及经济性,根据整车动力学原理,基于相同车辆配置,建立了配备集中式中心驱动四电机-4AMT变速器系统和单电机-6AMT变速器系统的整车动力学模型,设置不同的电机、变速器、换挡点、工作电机数量等参数,并根据动力性及经济性工况,仿真得到动力性及经济性结果,再进行试验验证。结果表明,集中式中心驱动四电机-4AMT变速器系统的动力性及经济性优势明显。
为研究不同预选挡机制下的双离合变速器敲击特性和控制方法,分别在整车和敲击台架上评价变速器的敲击主客观表现和随角加速度变化的敲击灵敏度;其次,根据敲击灵敏度,整车扭振响应和敲击主客观结果的相关性提出了一种定量评价变速器输入轴角加速度的无敲击扭振阈值。在相同整车上分别评价不同扭振和敲击的被动控制措施,包括离合器式扭转减振器,双质量飞轮式扭转减振器,以及离合器微滑摩和离心摆吸振器与扭转减振器的组合方案。台架试验结果表明预选挡显著改变双离合变速器的敲击特性,在某一激励幅值时产生敲击突变现象。整车试验结果表明离合器式和双质量飞轮式扭转减振器无法满足双离合变速器加速工况无敲击扭振阈值要求,在低转速段产生明显敲击;离合器微滑摩和离心摆吸振器与扭转减振器组合方案的输入轴角加速度幅值满足无敲击扭振阈值要求,消除了双离合变速器动力系统存在预选挡时的加速敲击。
某型号混合动力专用变速器在动总台架及整车试验过程中发生P1电机输入轴断裂的问题,在排除电机输入轴本身强度问题的基础上,首次发现在P1电机连续短时起动发动机过程中存在双质量飞轮(DMF)的共振并圈现象。在此基础上,建立一维动力学仿真模型,验证了双质量飞轮的共振并圈现象,发现该现象导致电机输入轴产生的转矩为正常起动过程中转矩的5~6倍。最后提出一种优化起动过程的控制策略,解决了双质量飞轮的共振并圈,进而解决电机输入轴的断裂问题,同时也优化了整车起动过程的NVH性能。这为混合动力系统开发过程中类似问题的解决提供了一种新的思路,具有很强的指导意义和工程价值。
为解决传统双电流调节器弱磁控制策略因交叉耦合和电流调节器饱和导致的系统不稳定问题,提高电流动态响应速度,本文提出一种稳定的永磁同步电机深度弱磁控制策略——基于电压相角的改进型单电流调节器弱磁控制及模式切换控制策略。该控制策略集成了动态性能优异、控制结构简单、不依赖电机参数、电压利用率高和可移植性强等优点。在分析了不同单电流调节器的稳定运行范围后,根据系统控制需求的不同,规划了不同的电流轨迹,设计了不同单电流调节器弱磁控制策略,优化改进了恒转矩区和弱磁区切换条件,确定了恒转矩区和弱磁区切换时保持电压相角不变的关键,提出了不同单电流调节器切换时,可根据控制需求的不同,设计不同的切换方法,但须确保切换时交轴电压保持不变的切换关键,使控制策略便于工程应用。仿真和实验验证了所提方法的稳定深度弱磁能力和切换控制策略的有效性,最终实现了6.3倍深度弱磁控制和弱磁区不同单电流调节器在电动工况和发电工况下的平滑切换。
为改善通过路面实现动力耦合与电池充电的TTR汽车经济性,分析TTR汽车结构及工作模式,基于等效油耗最小的能量管理策略(ECMS),计算固定等效因子(CECMS);为使电池SOC保持稳定并控制发动机工作于低燃油消耗区,将行驶所需发动机等价总转矩及电池SOC模糊化,制定等效因子的模糊控制规则,而提出模糊自适应等效燃油消耗最小控制策略(FAECMS)。利用MATLAB/Simulink建立包含TTR汽车动力学的CECMS、FAECMS模型,选取FTP75、CLTC、WLTP 3种标准工况,当电池SOC初始值为60%时进行仿真计算,得出FAECMS相对CECMS在3种工况下电池SOC更稳定,并分别节约燃油5.5%、2.6%、8.3%。
以提出的一种左右驱动轮转矩可进行受控任意分配的电动汽车新型转矩定向分配(TV)驱动桥为研究对象,对其特有的多组行星齿轮复杂耦合机构在高速工况下会因齿轮系统传递误差激励,导致TV驱动桥系统出现振动噪声影响动态品质问题开展研究。首先在Romax软件中对驱动桥的静力学性能、固有振动频率和系统振动的来源及特性进行分析;其次,建立多工况下综合考虑齿向修形量和齿廓修形量的多目标齿轮微观修形优化函数;最后,分别对比了遗传算法和全因子法的齿形优化效果。研究结果表明:与驱动桥初始设计阶段相比,经过全因子法齿轮微观修形优化后TV驱动桥的承载能力和振动特性得到明显改善。
智能交通系统技术的发展为进一步提高车辆驾驶性能带来了新的机遇。插电式混合动力汽车的生态驾驶涉及到3个问题,分别为如何利用动态交通信息对纵向行驶速度进行规划,动力电池SOC全局最优快速规划,以及动力系统实时能量管理。为此,本文中设计了一种结合通精度模型的兼顾计算效率与求解精度的分层式控制策略。上层控制融合了动态交通信号灯信息,通过对车辆行驶速度优化提高了驾驶舒适性,中层则通过对动力系统模型拟合近似,利用凸优化算法实现了SOC快速全局最优规划,为消除拟合模型产生的误差,下层则基于原始非线性模型,通过反馈控制,构建了一种自适应等效燃油消耗最小值策略(A-ECMS)。结果表明,车辆的驾驶舒适性相比于没有速度优化的策略提升了75.92%,且燃油经济性相比于两种常用的基于线性规划的策略分别提升了7.39%与10.91%。
分段电枢轴向磁通电机基于其较高的转矩密度和紧凑的轴向尺寸,近年来被广泛应用于电动汽车领域。然而,由于分段电枢绕组与冷却结构接触位置的材料构成复杂,各点的接触压力难以确定,该区域的热导率始终是此类电机温度预测的难点。针对非理想接触面的传热行为,本文提出了一种在三维热阻网格模型基础上建立加权模型的研究方法以微调未知热导率。首先,介绍原理样机的拓扑结构,建立分段电枢单扇区的热阻网格模型以及加权模型框架。然后,通过遗传算法训练加权模型中的未知热导率,并使用该模型替换了传统的电机单扇区热阻网格模型。最后,该方法在原理样机实验台架中得到验证。
为提高电动汽车所配永磁同步电机(PMSM)的驱动系统工作效率,增强运动过程的平稳性及响应速度,以达到提升电动汽车驱动系统的整体动态控制性能。根据电动汽车电机工作特性分析及反馈控制原理推导,提出并设计切换函数式混合控制技术。该控制技术有效地提高了车用电机控制系统的动、静态性能和鲁棒性。为验证所提控制技术的有效性,建立仿真模型对其进行仿真分析,并搭建实验平台进行实验验证。仿真与实验结果均表明,所提控制技术具有输出响应快、无超调和振荡的优点,能够提高电机工作效率,优化驱动系统输出特性,提升电动汽车驱动系统的控制性能。
针对电动车驱动电机中参数存在不确定性的复杂情形,提出了一种考虑参数混合不确定性的驱动电机振动特性分析方法。首先基于神经网络代理模型建立驱动电机的径向电磁力、转矩波动和齿槽转矩的响应模型;然后,采用混合不确定模型描述驱动电机的不确定参数,将信息充足的参数描述为随机变量而信息匮乏的参数描述为区间变量;接着,结合泰勒级数展开和中心差分法,推导了一种求解驱动电机振动特性混合不确定响应的泰勒级数展开-中心差分法(Taylor series expansion-central difference method, TSE-CDM);最后,为验证TSE-CDM的有效性,给出了一种蒙特卡洛法作为参考方法。对某驱动电机振动特性的算例分析表明:基于2D有限元模型和神经网络模型计算驱动电机振动特性,具有较高的计算精度和效率;TSE-CDM能够有效地求解驱动电机振动特性的混合不确定响应。
分布式驱动汽车由于其左右轮转矩独立可控等优点,近年来受到广泛关注;而两挡变速器的使用可有效提高此类电动汽车的动力性与经济性。本文针对分布式驱动汽车提出了一种轮毂电机两挡变速器构型,并针对该构型设计了基于前馈加反馈的无动力中断换挡控制策略,以解决两挡变速器换挡过程动力中断的问题。接着,针对左右轮毂电机两挡变速器协同换挡问题,提出基于逻辑门限的左右协同换挡控制策略,以避免车辆在换挡过程中产生的较大横纵向加速度突变。最后基于搭建的Simulink-Simscape模型进行了无动力中断换挡与左右协同换挡控制策略的仿真验证。仿真结果表明,本文所提控制策略可有效避免轮毂电机两挡变速器换挡过程的动力中断,并可有效减少左右不协同换挡所带来的整车横纵向加速度突变。
双电机耦合驱动系统可实现无动力中断模式切换和不同负载下的高效驱动,显著提高纯电动汽车的动力性和经济性。因其具有多自由度、多源驱动等特性,导致构型设计无规律可循。本文采用功能分析法研究双电机耦合驱动系统构型的功能生成及结构衍生过程,提出包含功能生成及结构衍生的分层设计方法。建立以子机构为基本单元的图论模型,基于运动干涉判断路径可耦合条件,通过路径叠加,获取满足功能需求的操纵序列。提出由基本构型到齿轴构型、齿轴构型到具体构型的逐级结构衍生方法。最后以某电动商用车为例,选取优选方案进行参数设计并仿真分析。与原车相比,C-WTVC工况下该类方案的百公里耗电量降低了8.97%,0-50 km/h的加速时间缩短了8.9 s。
由于功率分流混合动力系统性能测试台架与实际车辆的动力学特性存在差异,导致测试台架难以精确模拟实车的行驶负载特性,使得功率分流混合动力系统模式切换性能测试的准确度不高。为此,本文提出一种基于负载动态补偿的功率分流混合动力系统模式切换性能台架测试方法。首先,建立了考虑实际车辆道路负载、模拟发动机、功率分流混合动力专用变速器(dedicated hybrid transmission, DHT)和测试台架传动系统的台架系统动力学模型;其次,针对纯电动至功率分流混合动力模式切换过程,对比分析了动力源的动态响应和台架系统模型的加载特性;然后,设计了基于转速闭环跟踪的转速前馈校正补偿器以提高负载模拟转速控制的抗干扰能力,并结合转矩前馈校正补偿器降低加载转矩的动态误差。最后,离线仿真和硬件在环台架试验结果表明:基于台架系统模型开发的负载动态补偿算法可提高测试台架加载精度32.67%以上,保证了功率分流混合动力系统模式切换性能测试的准确性。
分布式电驱动装载机是电动底盘技术在工程车辆上的重要应用。装载机铲土作业时车速接近于零且不易准确获取,基于滑转率的防滑控制算法难以应用。本文通过分析车轮打滑时的角加速度特性,提出基于车轮角加速度逻辑门限的防滑控制方法和数据处理算法。首先通过装载机的实车数据验证算法的有效性。随后采用ADAMS和Simulink联合仿真分析,结果表明算法在装载机铲土作业工况下能有效防止车轮持续打滑,发挥路面附着条件。同时,该控制算法在低附路面加速工况下也获得良好的防滑效果,具有一定的路况适用性。
能量管理策略是混合动力汽车关键技术之一。随着计算能力与硬件设备的不断升级,越来越多的学者逐步开展了基于学习的能量管理策略的研究。在基于强化学习的混合动力汽车能量管理策略研究中,智能体与环境相互作用的导向是由奖励函数决定。然而,目前的奖励函数设计多数是主观决定或者根据经验得来的,很难客观地描述专家的意图,所以在该条件不能保证智能体在给定奖励函数下学习到最优驾驶策略。针对这些问题,本文提出了一种基于逆向强化学习的能量管理策略,通过逆向强化学习的方法获取专家轨迹下的奖励函数权值,并用于指导发动机智能体和电池智能体的行为。之后将修改后的权重重新输入正向强化学习训练。从油耗值、SOC变化曲线、奖励训练过程、动力源转矩等方面,验证该权重值的准确性以及在节油能力方面具有一定的优势。综上所述,该算法的节油效果提高了5%~10%。
提出一种纯电动汽车传动系统与电机结构参数协同设计优化方法,来提高纯电动汽车动力性与经济性,同时降低永磁同步电机齿槽转矩以降低电机的振动噪声。首先,以电机结构参数为输入,额定转矩与齿槽转矩为输出,开展了基于电机多参数仿真和不同机器学习预测模型精度的研究,并建立永磁同步电机额定转矩和齿槽转矩的高精度机器学习预测模型;其次,利用电机基本设计参数(额定转矩、峰值转矩、额定转速、峰值转速)以及峰值效率构建永磁同步电机效率map图的快速预估数学模型;再次,基于电机齿槽转矩预测模型以及电机效率map图的快速预估数学模型,建立电机结构参数与效率特性的映射关系;最后,以电机结构参数和传动比为优化变量,整车动力性、经济性以及电机齿槽转矩为优化目标,运用遗传算法进行多目标优化。仿真结果表明,相较于优化前,优化后的整车性能0-100 km/h加速时间缩短了27.3%,15 km/h最大爬坡度提高了40.5%,WLTC工况能耗减少了1.6%,电机齿槽转矩降低了42.2%。
分布式驱动电动汽车的各轮轮毂电机驱动力矩独立可控,是一个典型的过驱动系统。通过优化各轮驱动力矩分配,可以实现容错控制。本文中以分布式驱动电动汽车为研究对象,针对线控转向系统和轮毂电机多执行器同时失效的轨迹跟踪问题,提出了一种基于差动转向和驱动转矩分配的容错控制方法。该方法采用分层式架构:上层控制器通过模型预测控制方法得到前轮转角,并在转向系统执行器失效时,通过滑模控制方法计算差动转向力矩;下层控制器结合故障诊断信息,基于二次规划算法求解存在驱动电机失效情况的转矩优化分配策略。最后,进行了单执行器失效及多执行器同时失效的仿真实验,结果验证了该容错控制方法的有效性。
超级电容荷电状态(SOC)的准确估计,直接决定了电动汽车的起动、爬升和加速性能,是电动汽车混合储能系统最重要的任务之一。为此,本文中提出了一种基于模糊熵加权融合的超级电容SOC估计方法。首先,利用粒子群算法辨识了-10、10、25和40 ℃下的戴维南模型参数,并且采用最近邻点法建立了其与温度之间的映射关系。然后,利用模糊熵设计了基于3种典型卡尔曼滤波的SOC加权融合估计方法。最后,选择自适应加权平均以及残差归一化加权融合的SOC估计方法用于进一步评估该方法的性能表征。结果表明,基于模糊熵加权融合的超级电容SOC估计方法能够提高超级电容SOC估计精度,尤其在高温环境(40 ℃)下提升效果更为显著。
随着电动汽车在我国的发展,动力电池的安全性能成为评价电动汽车综合产品力的重要指标,其中动力电池热失控的检测对乘车人员的安全至关重要。针对传统热失控检测方法在实际应用中难以准确做出判断的问题,从电池传感器直接观测的电压、电流、时间等参数中提取状态特征向量,使用混合高斯模型对特征进行最优化筛选。分别对动力电池不同的安全状态评估其混合概率分布,通过BW方法建立隐马尔可夫模型,利用维特比算法对当前观测序列计算相似概率来判断当前电池的健康状况。实验结果表明,隐马尔可夫模型对动力电池热失控的识别较常见时序检测方法更为准确,可以实现在无需电化学仪器检测的前提下达到初步热失控风险检测的目的,提升安全检测效率,降低检测成本。
开空调引起“实际续航里程显著缩短”是制约电动汽车发展的一大因素,如何降低空调系统能耗成为现阶段各大主机厂亟待解决的难题。本文综合考虑新风需求与能耗之间的平衡,提出制冷工况下汽车座舱新风比例智能控制策略,并针对基准通风方式与智能新风控制方式的节能效果进行了分析。分析发现新风比例智能控制策略可以显著降低空调系统能耗,环境温度为40 ℃时,压缩机能耗最大可降低约49.7%,电量为100 kW·h的电动汽车最多可增加实际续航82 km。