汽车工程 ›› 2025, Vol. 47 ›› Issue (9): 1665-1673.doi: 10.19562/j.chinasae.qcgc.2025.09.003

• • 上一篇    

基于跨域时空特征匹配的路端3D目标检测无监督学习方法研究

龚伟,王亚飞(),汪博文,李泽星,孙家铭   

  1. 上海交通大学,上海 200240
  • 收稿日期:2024-12-06 修回日期:2025-03-23 出版日期:2025-09-25 发布日期:2025-09-19
  • 通讯作者: 王亚飞 E-mail:wyfjlu@sjtu.edu.cn
  • 基金资助:
    国家自然科学基金(52072243)

Study on Unsupervised Learning Method for Roadside 3D Object Detection Based on Cross Domain Spatiotemporal Feature Matching

Wei Gong,Yafei Wang(),Bowen Wang,Zexing Li,Jiaming Sun   

  1. Shanghai Jiao Tong University,Shanghai 200240
  • Received:2024-12-06 Revised:2025-03-23 Online:2025-09-25 Published:2025-09-19
  • Contact: Yafei Wang E-mail:wyfjlu@sjtu.edu.cn

摘要:

路端3D目标检测能提供广域交通参与者信息,可有效赋能单车自动驾驶。一般而言,在新的路口部署感知系统需要采集大量数据并进行人工标注以保证训练模型的检测精度,部署耗时长且成本高。针对上述问题,本文提出了一种面向路侧端的无监督域自适应算法,通过现有高质量标注路端数据与未知路端场景数据的跨域时空特征匹配,实现高效网络知识迁移与高准确率3D目标检测。首先,构建了考虑跨域训练数据分布均衡的源域训练模型(RoadPillars),能有效减少模型对原有数据分布的过拟合,提升模型泛化性。其次,设计了考虑连续序列信息空间一致性的跨域迁移框架,确保迁移过程稳定鲁棒。在3个不同路端场景和雷达类型的公开数据集展开的两组迁移测试结果显示,本文无监督域适应算法相较于目前最新方法的平均精度提升了24.2%和8.0%,有效增强了路端感知中目标检测模型的泛化性与可靠性。

关键词: 路端感知, 3D目标检测, 迁移学习, 无监督域适应, 特征匹配

Abstract:

Roadside 3D target detection provides wide-view traffic information, effectively enhancing single-vehicle autonomous driving. In general, deploying a perception system at a new intersection requires a large amount of data collection and manual labeling to ensure the detective accuracy of the training model, which is time-consuming and costly. For the above-mentioned problems, in this paper an unsupervised domain adaptation (UDA) algorithm is proposed for roadside application, which achieves efficient knowledge transfer and accurate 3D object detection by matching cross-domain spatiotemporal features between high-quality labeled roadside data and unknown roadside scenes. Firstly, a source-domain training model (RoadPillars) is constructed that balances cross-domain data distributions, effectively reducing overfitting of the model to the original data distribution and improving model generalization. Moreover, a cross-domain transfer scheme is designed that ensures spatial consistency of continuous sequences for stable and robust UDA. The experimental results on three distinct roadside scenes and LiDAR types from public datasets demonstrate that the unsupervised domain adaption algorithm proposed in this paper achieves an average accuracy improvement of 24.2% and 8.0% over state-of-the-art approach, significantly improving the generalization and reliability of roadside perception.

Key words: roadside perception, 3D object detection, transfer learning, unsupervised domain adaptation, feature matching