| [1] |
丁飞, 张楠, 李升波, 等. 智能网联车路云协同系统架构与关键技术研究综述 [J]. 自动化学报, 2022, 48(12): 2863-2885.
|
|
DING Fei, ZHANG Nan, LI Shengbo, et al. A survey of architecture and key technologies of intelligent connected vehicle-road-cloud cooperation system [J]. Acta Automatica Sinica, 2022, 48(12): 2863-2885.
|
| [2] |
张毅, 裴华鑫, 姚丹亚. 车路协同环境下车辆群体协同决策研究综述 [J]. 交通运输工程学报, 2022, 22(3): 1-18.
|
|
ZHANG Yi, PEI Huaxin, YAO Danya. Research review on cooperative decision-making for vehicle swarms in vehicle-infrastructure cooperative environment[J]. Journal of Traffic and Transportation Engineering, 2022, 22(3): 1-18.
|
| [3] |
YU Haibao, LUO Yizhen, SHU Mao, et al. Dair-v2x: a large-scale dataset for vehicle-infrastructure cooperative 3d object detection[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 21361-21370.
|
| [4] |
YU Haibao, YANG Wenxian, RUAN Hongzhi, et al. V2x-seq: a large-scale sequential dataset for vehicle-infrastructure cooperative perception and forecasting[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 5486-5495.
|
| [5] |
HAO Ruiyang, FAN Siqi, DAI Yingru, et al. Rcooper: a real-world large-scale dataset for roadside cooperative perception [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024: 22347-22357.
|
| [6] |
QI C R, SU Hao, MO Kaichun, et al. PointNet: deep learning on point sets for 3D classification and segmentation [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 652-660.
|
| [7] |
QI C R, YI Li, SU Hao, et al. Pointnet++: deep hierarchical feature learning on point sets in a metric space [J]. Advances in Neural Information Processing Systems, 2017, 30.
|
| [8] |
SHI Shaoshuai, WANG Xiaogang, LI Hongsheng. Pointrcnn: 3D object proposal generation and detection from point cloud[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 770-779.
|
| [9] |
ZHOU Yin, TUZEL Oncel. Voxelnet: end-to-end learning for point cloud based 3D object detection [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 4490-4499.
|
| [10] |
LANG Alex H, VORA Sourabh, CAESAR Holger, et al. Pointpillars: fast encoders for object detection from point clouds [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 12697-12705.
|
| [11] |
YAN Yan, MAO Yuxing, LI Bo. Second: sparsely embedded convolutional detection [J]. Sensors, 2018, 18(10): 3337.
|
| [12] |
WU Jianqing, XU Hao, SUN Yuan, et al. Automatic background filtering method for roadside LiDAR data [J]. Transportation Research Record, 2018, 2672(45): 106-114.
|
| [13] |
YANG Lei, YU Kaicheng, TANG Tao, et al. Bevheight: a robust framework for vision-based roadside 3D object detection [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 21611-21620.
|
| [14] |
ZIMMER Walter, BIRKNER Joseph, BRUCKER Marcel, et al. Infradet3D: multi-modal 3D object detection based on roadside infrastructure camera and lidar sensors [C]. 2023 IEEE Intelligent Vehicles Symposium (IV), 2023: 1-8.
|
| [15] |
刘正发, 吴亚, 刘佩根, 等. 基于特征和标签联合分布匹配的智能驾驶跨域自适应目标检测 [J]. 汽车工程, 2023, 45(11): 2082-2091.
|
|
LIU Zhengda, WU Ya, LIU Peigen, et al. Cross-domain object detection for intelligent driving based on joint distribution matching of features and labels [J]. Automotive Engineering, 2023, 45(11): 2082-2091.
|
| [16] |
胡杰, 徐博远, 熊宗权, 等. 基于多尺度掩码分类域自适应网络的跨域目标检测算法 [J]. 汽车工程, 2022, 44(9): 1327-1338.
|
|
HU Jie, XU Boyuan, XIONG Zongquan, et al. Cross-domain object detection algorithm based on multi-scale mask classification domain adaptive network [J]. Automotive Engineering, 2022, 44(9): 1327-1338.
|
| [17] |
WANG Yan, CHEN Xiangyu, YOU Yurong, et al. Train in germany, test in the usa: making 3D object detectors generalize [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11713-11723.
|
| [18] |
YANG Jihan, SHI Shaoshuai, WANG Zhe, et al. St3D: self-training for unsupervised domain adaptation on 3d object detection [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 10368-10378.
|
| [19] |
YANG Jihan, SHI Shaoshuai, WANG Zhe, et al. St3D++: denoised self-training for unsupervised domain adaptation on 3D object detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45(5): 6354-6371.
|
| [20] |
CHEN Zhuoxiao, LUO Yadan, WANG Zheng, et al. Revisiting domain-adaptive 3D object detection by reliable, diverse and class-balanced pseudo-labeling [C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023: 3714-3726.
|
| [21] |
NEYSHABUR Behnam, SEDGHI Hanie, ZHANG Chiyuan. What is being transferred in transfer learning? [J]. Advances in Neural Information Processing Systems, 2020, 33: 512-523.
|
| [22] |
TSAI D, BERRIO J S, SHAN M, et al. MS3D++: ensemble of experts for multi-source unsupervised domain adaptation in 3D object detection [J]. IEEE Transactions on Intelligent Vehicles, 2024: 1-16.
|