汽车工程 ›› 2025, Vol. 47 ›› Issue (9): 1763-1772.doi: 10.19562/j.chinasae.qcgc.2025.09.012

• • 上一篇    

液力缓速器充排油系统的建模与特性分析

薛茂翰1,付尧1,耿小虎1,孙少华2,雷雨龙1()   

  1. 1.吉林大学汽车工程学院,长春 130000
    2.中国石油大学机电工程学院,青岛 266000
  • 收稿日期:2025-01-07 修回日期:2025-02-18 出版日期:2025-09-25 发布日期:2025-09-19
  • 通讯作者: 雷雨龙 E-mail:leiyl@jlu.edu.cn

Modeling and Characteristics Analysis of Oil Charging and Discharging System of Hydraulic Auxiliary Braking System

Maohan Xue1,Yao Fu1,Xiaohu Geng1,Shaohua Sun2,Yulong Lei1()   

  1. 1.School of Automotive Engineering,Jilin University,Changchun 130000
    2.School of Mechanical and Electrical Engineering,China Shiyou University,Qingdao 266000
  • Received:2025-01-07 Revised:2025-02-18 Online:2025-09-25 Published:2025-09-19
  • Contact: Yulong Lei E-mail:leiyl@jlu.edu.cn

摘要:

并联式液力缓速器作为商用车重载长时间下坡过程中的辅助制动装置,工作腔内部复杂且难以解析的物理变化过程决定着制动响应时间以及制动转矩。本文建立等效液压模型来描述充排油系统的输入控制压力与输出制动特性间的非线性耦合关系,明确了中间变量“充液率”在输入量和输出量间的关系。研究发现随着车速的增加,工作腔充油量减少并最终降低制动转矩。当气压为2.5 bar时,输出轴在1 290 r/min时的制动转矩达到最大为4 044 N·m,随后制动转矩随转速的增加而下降。同时该模型能够有效预测液力缓速器的充排油响应时间,仿真与试验的误差最大为16.12%。本文准确解析了充排油系统的变化过程并获取相关特性,能够辅助液力缓速器的结构设计和车辆制动过程控制。

关键词: 辅助制动, 液力缓速器, 计算流体动力学, 转矩特性, 响应时间

Abstract:

Parallel hydraulic retarder is an auxiliary braking device in the heavy-load and long-term downhill process of commercial vehicles. The complex and difficult physical changing process inside the working chamber determines the response time and braking torque. The equivalent hydraulic model is established in this paper to describe the nonlinear coupling relationship between the inputting control pressure and the outputting braking characteristics of the oil filling and discharging system, and the relationship between the input and output is clarified, which is the intermediate variable "liquid filling rate". It is found that with the increase of vehicle speed, the amount of oil in the working chamber decreases and the braking torque eventually decreases. When the pressure is 2.5 bar, the braking torque of hydraulic retarder reaches the maximum of 4 044 N·m at 1 290 r/min, and then the braking torque decreases with the increase of rotating speed. Meanwhile, the model can effectively predict the response time of oil filling and discharging, and the maximum error between simulation and experiment is 16.12%. The changing process of oil charging and discharging system is accurately analyzed and the relevant characteristics are obtained in this paper, which can assist the structural design of hydraulic retarder and the control of vehicle braking process.

Key words: auxiliary braking, hydraulic retarder, computational fluid dynamics, torque characteristics, response time