汽车工程 ›› 2025, Vol. 47 ›› Issue (12): 2467-2482.doi: 10.19562/j.chinasae.qcgc.2025.12.019

• • 上一篇    

基于主动学习Kriging的结构可靠性分析方法及应用

吕辉1,严伟杰1,黄晓婷2()   

  1. 1.华南理工大学机械与汽车工程学院,广州 510641
    2.广州城市理工学院汽车与交通工程学院,广州 510800
  • 收稿日期:2025-03-07 修回日期:2025-05-08 出版日期:2025-12-25 发布日期:2025-12-19
  • 通讯作者: 黄晓婷 E-mail:huangxt_gcu@126.com
  • 基金资助:
    国家自然科学基金(52375093);广东省自然科学基金(2023A1515011585)

Active Learning Kriging Based Structural Reliability Analysis Method and Application

Hui Lü1,Weijie Yan1,Xiaoting Huang2()   

  1. 1.School of Mechanical and Automotive Engineering,South China University of Technology,Guangzhou 510641
    2.School of Automobile and Traffic Engineering,Guangzhou City University of Technology,Guangzhou 510800
  • Received:2025-03-07 Revised:2025-05-08 Online:2025-12-25 Published:2025-12-19
  • Contact: Xiaoting Huang E-mail:huangxt_gcu@126.com

摘要:

针对复杂汽车结构可靠性分析中计算精度不足和求解效率低的问题,提出了一种基于极限状态逼近和响应标准化的主动学习Kriging可靠性分析方法。首先,基于高斯分布假设的概率密度函数和改善期望准则,推导了极限状态逼近程度发生改善时的距离期望,并结合当前最大距离提出了预期改进指数;然后,考虑了模型预测值的不确定性,结合Kriging标准差提出了修正的预期改进学习函数,用于自适应增加训练样本;接着,引入一种响应标准化方法优化收敛阈值,有效缓解有量纲学习函数收敛的不稳定性问题;最后,通过4个应用算例验证所提出方法的有效性。结果表明,所提方法能以较少的功能函数调用次数实现对极限状态曲面的较强拟合,在多个可靠性分析场景中具有良好的适用性。

关键词: 可靠性分析, Kriging模型, 学习函数, 极限状态曲面, 主动学习

Abstract:

For the problems of low computational accuracy and efficiency in the reliability analysis of complex automotive structures, an active learning Kriging reliability analysis method is proposed based on the limit state approximation and normalized response. Firstly, based on the probability density function under the assumption of Gaussian distribution and the Expected improvement criterion, the expectation of improved distance is derived when the degree of limit state surface (LSS) approximation improves, and the expected improvement index is proposed in combination with the current maximum distance. Then, considering the uncertainty of prediction, a learning function named expectation of redefined improvement (ERI) is developed based on the Kriging standard variance, which is used to adaptively increase the training samples. Next, a normalized response method is introduced to optimize the convergence threshold, which effectively alleviates the instability of dimensional convergence criteria. Finally, the effectiveness of the proposed method is verified through four application examples. The results show that the proposed method can achieve strong fitting of LSS with fewer function calls, with good applicability in multiple reliability analysis scenarios.

Key words: reliability analysis, Kriging model, learning function, limit state surface, active learning