汽车工程 ›› 2025, Vol. 47 ›› Issue (5): 992-1006.doi: 10.19562/j.chinasae.qcgc.2025.05.019
• • 上一篇
马春龙1,2,3(
),夏文俊1,李胜国1,郭言语1,苏清源1(
)
收稿日期:2024-10-29
修回日期:2025-01-09
出版日期:2025-05-25
发布日期:2025-05-20
通讯作者:
马春龙,苏清源
E-mail:machunlong@hrbeu.edu.cn
基金资助:
Chunlong Ma1,2,3(
),Wenjun Xia1,Shengguo Li1,Yanyu Guo1,Qingyuan Su1(
)
Received:2024-10-29
Revised:2025-01-09
Online:2025-05-25
Published:2025-05-20
Contact:
Chunlong Ma,Qingyuan Su
E-mail:machunlong@hrbeu.edu.cn
摘要:
提出一种联合IHHO算法的优化方法,对桁架式清雪车车架进行轻量化研究。首先,构建了车架的有限元仿真模型,在多种工况下对其强度、刚度、模态进行定量分析,得其强度性能、刚度性能及固有频率。其次,利用响应面法以最大变形量和最大应力为响应值,优化车架各梁截面尺寸,得到3组最优解。在此基础上,对HHO算法进行改进,提出IHHO算法,采用IHHO算法验证最优解的有效性。优化结果表明,车架整体质量减轻33.6%,最大变形量减小6.33%,最大应力增加3.01%,1阶模态频率降低19.48%,有效避开了共振范围。本研究为桁架式车架的轻量化设计提供了一种高效、可行的优化策略,该方法在模型构建和获取准确估算结果方面具有显著优势,为相关领域的工程应用提供理论参考。
马春龙,夏文俊,李胜国,郭言语,苏清源. 基于联合IHHO算法的车架轻量化研究[J]. 汽车工程, 2025, 47(5): 992-1006.
Chunlong Ma,Wenjun Xia,Shengguo Li,Yanyu Guo,Qingyuan Su. Research on Vehicle Frame Lightweight Based on the IHHO Algorithm[J]. Automotive Engineering, 2025, 47(5): 992-1006.
表8
中心复合试验设计点计算数据"
| 设计点 | P1/mm | P2/mm | P3/mm | P4/mm | P5/mm | P6/MPa | P7/kg |
|---|---|---|---|---|---|---|---|
| 1 | 45.000 00 | 37.500 00 | 4.500 000 | 4.500 000 | 0.068 153 | 25.927 08 | 2.511 608 |
| 2 | 40.000 00 | 37.500 00 | 4.500 000 | 4.500 000 | 0.073 298 | 26.617 31 | 2.299 658 |
| 3 | 50.000 00 | 37.500 00 | 4.500 000 | 4.500 000 | 0.064 142 | 22.884 94 | 2.723 558 |
| 4 | 45.000 00 | 30.000 00 | 4.500 000 | 4.500 000 | 0.109 536 | 33.127 09 | 2.352 645 |
| 5 | 45.000 00 | 45.000 00 | 4.500 000 | 4.500 000 | 0.047 111 | 21.252 31 | 2.670 570 |
| 6 | 45.000 00 | 37.500 00 | 1.000 000 | 4.500 000 | 0.114 233 | 51.177 94 | 2.041 785 |
| 7 | 45.000 00 | 37.500 00 | 8.000 000 | 4.500 000 | 0.058 947 | 22.239 98 | 2.981 430 |
| 8 | 45.000 00 | 37.500 00 | 4.500 000 | 1.000 000 | 0.251 339 | 110.395 70 | 1.176 323 |
| 9 | 45.000 00 | 37.500 00 | 4.500 000 | 8.000 000 | 0.051 753 | 19.575 74 | 3.846 893 |
| 10 | 41.478 97 | 32.218 46 | 2.035 279 | 2.035 279 | 0.197 688 | 69.763 51 | 1.065 079 |
| 11 | 48.521 03 | 32.218 46 | 2.035 279 | 2.035 279 | 0.186 727 | 65.329 38 | 1.200 092 |
| 12 | 41.478 97 | 42.781 54 | 2.035 279 | 2.035 279 | 0.117 786 | 53.626 58 | 1.166 338 |
| 13 | 48.521 03 | 42.781 54 | 2.035 279 | 2.035 279 | 0.115 807 | 51.325 12 | 1.301 351 |
| 14 | 41.478 97 | 32.218 46 | 6.964 721 | 2.035 279 | 0.140 781 | 55.535 27 | 1.718 607 |
| 15 | 48.521 03 | 32.218 46 | 6.964 721 | 2.035 279 | 0.134 392 | 53.581 65 | 1.853 620 |
| 16 | 41.478 97 | 42.781 54 | 6.964 721 | 2.035 279 | 0.076 214 | 40.636 16 | 2.065 117 |
| 17 | 48.521 03 | 42.781 54 | 6.964 721 | 2.035 279 | 0.076 695 | 40.473 58 | 2.200 130 |
| 18 | 41.478 97 | 32.218 46 | 2.035 279 | 6.964 721 | 0.097 660 | 33.113 56 | 2.896 660 |
| 19 | 48.521 03 | 32.218 46 | 2.035 279 | 6.964 721 | 0.088 816 | 30.660 94 | 3.358 673 |
| 20 | 41.478 97 | 42.781 54 | 2.035 279 | 6.964 721 | 0.057 497 | 23.892 29 | 2.997 920 |
| 21 | 48.521 03 | 42.781 54 | 2.035 279 | 6.964 721 | 0.053 193 | 23.882 78 | 3.459 933 |
| 22 | 41.478 97 | 32.218 46 | 6.964 721 | 6.964 721 | 0.074 817 | 25.168 51 | 3.321 288 |
| 23 | 48.521 03 | 32.218 46 | 6.964 721 | 6.964 721 | 0.066 650 | 21.965 64 | 3.783 302 |
| 24 | 41.478 97 | 42.781 54 | 6.964 721 | 6.964 721 | 0.039 220 | 17.677 10 | 3.667 798 |
| 25 | 48.521 03 | 42.781 54 | 6.964 721 | 6.964 721 | 0.035 449 | 15.562 29 | 4.129 811 |
| 1 | 金红杰,周忠胜,臧利国,等.基于实测载荷谱的车架结构仿真优化方法及应用[J].振动与冲击,2023,42(1):181-189. |
| JIN H J, ZHOU Z S, ZANG L G, et al. Simulation and optimization method of vehicle frame structure based on measured load spectrum and its application[J]. Journal of Vibration and Shock, 2023, 42(1): 181-189. | |
| 2 | 范子杰,桂良进,苏瑞意.汽车轻量化技术的研究与进展[J].汽车安全与节能学报,2014,5(1):1-16. |
| FAN Z J, GUI L J, SU R Y. Research and development of automotive lightweight technology[J]. Journal of Automotive Safety and Energy, 2014, 5(1): 1-16. | |
| 3 | 赵帅,隰大帅,王世朝,等.FSAE赛车车架的强度和刚度分析[J].计算机辅助工程,2011,20(4):53-56. |
| ZHAO S, XI D S, WANG S C, et al. Strength and stiffness analysis on FSAE racing car frame[J]. Computer Aided Engineering, 2011, 20(4): 53-56. | |
| 4 | ZHANG J, DENG Y, ZHENG B, et al. Lightweight design of low-load electric vehicle frame[J]. Journal of Computational Methods in Sciences and Engineering, 2020, 21(3):1-11. |
| 5 | MA W Y, LU Y H, WANG P Y, et al. Double optimization design of the formula racing car frame based on the variable density method and the joint variable method[J]. Applied Sciences, 2023, 13: 10155. |
| 6 | 吴钟鸣,徐礼辉,郭语.小型电动汽车车架的设计与轻量化改进[J].现代制造工程,2020(4):77-82. |
| WU Z M, XU L K, GUO Y, et al. Design and lightweight improvement of small electric vehicle frame[J]. Modern Manufacturing Engineering, 2020(4):77-82. | |
| 7 | 于玉真,李伟亮,李励.微型电动汽车车架结构轻量化设计研究[J].现代制造工程,2019(1):75-81. |
| YU Y Z, LI W L, LI L. Research on lightweight design of the frame structure for micro electric vehicles[J]. Modern Manufacturing Engineering, 2019(1):75-81. | |
| 8 | 付为刚,程文明,于兰峰,等.正轨箱梁横向肋的竹子结构仿生学设计[J].西南交通大学学报,2013,48(2):211-216. |
| FU W G, CHENG W M, YU L F, et al. Bionics design of transverse stiffener in the upright rail box girder based on bamboo strucure[J]. Journal of Southwest Jiaotong University, 2013,48(2):211-216. | |
| 9 | 李兴山,乔捷,李明昊.仿生机器鱼框架机构动力学分析与轻量化设计[J].机械强度,2023,45(5):1199-1204. |
| LI X S, QIAO J, LI H M. Dynamics analysis and light- weight design of bionic robotic fish frame mechanism[J]. Journal of Mechanical Strength, 2023,45(5):1199-1204. | |
| 10 | 丁友,周洲,刘红军,等.基于基结构法的机翼仿生曲面网格结构设计[J].西北工业大学学报,2022,40(2):271-280. |
| DING Y, ZHOU Z, LIU H J, et al. Designing bionic surface grid structure with base structure method[J]. Journal of Northwestern Polytechnical University,2022,40(2):271-280. | |
| 11 | 张健,谢禹琳.某微型电动商用车车架轻量化优化研究[J].机电工程,2020,37(3):283-287. |
| ZHANG J, XIE Y L. Optimization of lightweight frame for a micro-electric commercial vehicle[J].Journal of Mechanical&Electrical Engineering, 2020,37(3):283-287. | |
| 12 | 顾方秋,苏小平,缪小冬.某半挂车车架性能分析及结构优化设计[J].重庆理工大学学报(自然科学),2022,36(7):94-101.GU F Q, SU X P, MIU X D. Performance analysis and structural optimization design of a semi-trailer frame[J]. Journal of Chongqing University of Technology(Natural Science), 2022,36(7):94-101. |
| 13 | LIU F, XU Y L, LI M, et al. Optimization of automotive battery pack casing based on equilibrium response surface model and multi-objective particle swarm algorithm[J]. Proceedings of the Institution of Mechanical Engineers,2023,237(6):1183-1194. |
| 14 | XU T, YANG J L, ZHU L L, et al. Lightweight design optimization of nonpneumatic tires under radial-stiffness constraints[J].Machines,2022,10(10):889-889. |
| 15 | JIANG R C, CI S K, LIU D, et al. A hybrid multi-objective optimization method based on NSGA-II algorithm and entropy weighted TOPSIS for lightweight design of dump truck carriage[J]. Machines, 2021, 9: 156. |
| 16 | CHENG L, LIN H B, ZHANG Y L. Optimization design and analysis of mobile pump truck frame using response surface methodology[J]. PLoS ONE, 2023, 18(8): e0290348. |
| 17 | 马芳武,王卓君,杨猛,等.汽车后副车架轻量化概念设计方法研究[J].汽车工程,2021,43(5):776-783,790. |
| MA F W, WANG Z J, YANG M, et al. Research on light-weight conceptual design method of vehicle rear subframe[J]. Automotive Engineering, 2021,43(5):776-783,790. | |
| 18 | 陈静,崔晓凡,郑晋军,等.基于加点多目标粒子群算法的碳纤维防撞梁优化设计[J].湖南大学学报(自然科学版),2022,49(8):21-28. |
| CHENG J, CUI X F, ZHENG J J, et al. Optimization design of carbon fiber anti-collision beam based on multi-objective particle swarm with additional points[J].Journal of Hunan University(Natural Sciences), 2022,49(8):21-28. | |
| 19 | 杨海洋,丁娟,蔡珂芳,等.基于粒子群-细菌觅食混合优化算法的汽车碳纤维复合材料地板铺层设计[J].汽车技术,2024(8):53-62. |
| YANG H Y, DING J, CAI K F, et al. Ply design of automotive carbon fiber composite floor based on PSO-BFO algorithm[J]. Automobile Technology, 2024(8):53-62. | |
| 20 | WANG D F, XIE C, LIU Y C, et al. Multi-objective collaborative optimization for the lightweight design of an electric bus body frame[J]. Automotive Innovation, 2020, 3(3): 250-259. |
| 21 | 张亮,张继业,李田,等.超高速列车流线型头型多目标优化设计[J].机械工程学报,2017,53(2):106-114. |
| ZHANG L, ZHANG J Y, LI T, et al.Multi-objective optimization design of the streamlined head shape of super high-speed trains[J]. Journal of Mechanical Engineering, 2017,53(2):106-114. | |
| 22 | 王万林,徐从昌,王震虎,等.铝合金车体的有限元分析和结构评估方法研究[J].汽车工程,2019,41(6):607-614,640. |
| WANG W L, XU C C, WANG Z H, et al. A study on finite element analysis and structural assessment method for aluminum-alloy vehicle body[J]. Automotive Engineering,2019,41(6):607-614,640. | |
| 23 | 徐灏.机械强度设计中的安全系数和许用应力[J].机械强度,1981(2):39-45. |
| XU H. Safety factor and allowable stress in mechanical strength design[J]. Journal of Mechanical Strength, 1981(2):39-45. | |
| 24 | 刘长钊,张铁,宋健,等.纯电动汽车电驱动系统耦合动力学研究[J].汽车工程,2022,44(12):1896-1909. |
| LIU C Z, ZHANG T, SONG J, et al. Study on coupling dynamics of electric drive system of pure electric vehicle[J]. Automotive Engineering, 2022,44(12):1896-1909. | |
| 25 | 高岳林,杨钦文,王晓峰,等.新型群体智能优化算法综述[J].郑州大学学报(工学版),2022,43(3):21-30. |
| GAO Y L, YANG Q W, WANG X F, et al. Overview of new swarm intelligent optimization algorithms[J]. Journal of Zhengzhou University(Engineering Science), 2022,43(3):21-30. | |
| 26 | 汤安迪,韩统,徐登武,等.混沌精英哈里斯鹰优化算法[J].计算机应用,2021,41(8):2265-2272. |
| TANG A D, HAN T, XU D W, et al.Chaotic elite Harris hawks optimization algorithm[J]. Journal of Computer Applications,2021,41(8):2265-2272. | |
| 27 | GURAGAIN N, BISTA R, NEPAL P, et al.An experimental and numerical investigation on fatigue life cycle of leaf spring[J].IOP Conference Series:Materials Science and Engineering,2024,1314(1):012002-012002. |
| 28 | 荣吉利,李先航,王玺,等.某大型运输车的耐久性虚拟试验研究[J].北京理工大学学报,2022,42(2):111-117. |
| RONG J L, LI X H, WANG Y, et al. Virtual research on durability of large special freight vehicle[J].Transactions of Beijing Institute of Technology,2022,42(2):111-117. |
| [1] | 尹珩沣,卢荡,闵海涛,吴海东,张彦东. 侧倾角对轮胎转偏力学特性影响研究[J]. 汽车工程, 2025, 47(2): 342-355. |
| [2] | 马骋浩,申宗玹,汪俊,敖文宏,邢伯斌,夏勇. 侧面柱碰撞工况电池包碰撞安全性快速预测[J]. 汽车工程, 2025, 47(1): 117-126. |
| [3] | 阮世捷,苏航杰,李海岩,崔世海,贺丽娟,吕文乐. 正面100%重叠刚性壁障碰撞试验仿真中三岁儿童乘员的损伤评价[J]. 汽车工程, 2022, 44(3): 403-411. |
| [4] | 卢荡,杨文豪,吴海东,陈南施,成健,张振伟. 轮胎力学特性仿真高精度有限元建模方法研究[J]. 汽车工程, 2022, 44(10): 1556-1562. |
| [5] | 张绍伟,朱大炜,翟光照. 基于深度学习的座椅抗挥鞭伤性能预测[J]. 汽车工程, 2022, 44(10): 1600-1608. |
| [6] | 赵颖,马杰,桑叶,王凯锋,马芳武. 不完整因子条件下内凹六边形微结构面内动态性能研究[J]. 汽车工程, 2021, 43(6): 924-933. |
| [7] | 崔世海,马伟盛,李海岩,贺丽娟,吕文乐. 城市公交车内儿童乘员头部损伤的有限元分析[J]. 汽车工程, 2021, 43(3): 414-420. |
| [8] | 杨靖, 罗贤芳, 何联格, 陶文祝, 赵超. 稀薄燃烧发动机改型设计及正时策略优化*[J]. 汽车工程, 2020, 42(4): 439-444. |
| [9] | 夏磊, 江浩斌, 耿国庆. 重型车辆W-ECHPS中绕组式永磁耦合器的稳态性能研究*[J]. 汽车工程, 2019, 41(6): 703-710. |
| [10] | 崔岸,陈宠,张世广,于多年,张晗,孙文龙,郝裕兴. 基于效用函数理论的车身PP夹芯板结构参数优化与应用研究*[J]. 汽车工程, 2019, 41(3): 354-359. |
|
||